Objective: Otoscopy is a frequently performed procedure and competency in this skill is important across many specialties. We aim to systematically review current medical educational evidence for training of handheld otoscopy skills.
Methods: Following the PRISMA guideline, studies reporting on training and/or assessment of handheld otoscopy were identified searching the following databases: PubMed, Embase, OVID, the Cochrane Library, PloS Medicine, Directory of Open Access Journal (DOAJ), and Web of Science. Two reviewers extracted data on study design, training intervention, educational outcomes, and results. Quality of educational evidence was assessed along with classification according to Kirkpatrick’s model of educational outcomes.
Results: The searches yielded a total of 6064 studies with a final inclusion of 33 studies for the qualitative synthesis. Handheld otoscopy training could be divided into workshops, physical simulators, web-based training/e-learning, and smartphone-enabled otoscopy. Workshops were the most commonly described educational intervention and typically consisted of lectures, hands-on demonstrations, and training on peers. Almost all studies reported a favorable effect on either learner attitude, knowledge, or skills. The educational quality of the studies was reasonable but the educational outcomes were mostly evaluated on the lower Kirkpatrick levels with only a single study determining the effects of training on actual change in the learner behavior.
Conclusion: Overall, it seems that any systematic approach to training of handheld otoscopy is beneficial in training regardless of learner level, but the heterogeneity of the studies makes comparisons between studies difficult and the relative effect sizes of the interventions could not be determined.
Objective: Myringotomy and ventilation tube insertion (MT) is a key procedure in otorhinolaryngology and can be trained using simulation models. We aimed to systematically review the literature on models for simulation-based training and assessment of MT and supporting educational evidence.
Databases reviewed: PubMed, Embase, Cochrane Library, Web of Science, Directory of Open Access Journals.
Methods: Inclusion criteria were MT training and/or skills assessment using all types of training modalities and learners. Studies were divided into 1) descriptive and 2) educational interventional/observational in the analysis. For descriptive studies, we provide an overview of available models including materials and cost. Educational studies were appraised using Kirkpatrick’s level of educational outcomes, Messick’s framework of validity, and a structured quality assessment tool.
Results: Forty-six studies were included consisting of 21 descriptive studies and 25 educational studies. Thirty-one unique physical and three virtual reality simulation models were identified. The studies report moderate to high realism of the different simulators and trainees and educators perceive them beneficial in training MT skills. Overall, simulation-based training is found to reduce procedure time and errors, and increase performance as measured using different assessment tools. None of the studies used a contemporary validity framework and the current educational evidence is limited.
Conclusion: Numerous simulation models and assessment tools have been described in the literature but educational evidence and systematic implementation into training curricula is scarce. There is especially a need to establish the effect of simulation-based training of MT in transfer to the operating room and on patient outcomes.
Purpose: At graduation from medical school, competency in otoscopy is often insufficient. Simulation-based training can be used to improve technical skills, but the suitability of the training model and assessment must be supported by validity evidence. The purpose of this study was to collect content validity evidence for a simulation-based test of handheld otoscopy skills.
Methods: First, a three-round Delphi study was conducted with a panel of nine clinical teachers in otorhinolaryngology (ORL) to determine the content requirements in our educational context. Next, the authenticity of relevant cases in a commercially available technology-enhanced simulator (Earsi, VR Magic, Germany) was evaluated by specialists in ORL. Finally, an integrated course was developed for the simulator based on these results.
Results: The Delphi study resulted in nine essential diagnoses of normal variations and pathologies that all junior doctors should be able to diagnose with a handheld otoscope. Twelve out of 15 tested simulator cases were correctly recognized by at least one ORL specialist. Fifteen cases from the simulator case library matched the essential diagnoses determined by the Delphi study and were integrated into the course.
Conclusion: Content validity evidence for a simulation-based test of handheld otoscopy skills was collected. This informed a simulation-based course that can be used for undergraduate training. The course needs to be further investigated in relation to other aspects of validity and for future self-directed training.
OBJECTIVE: Handheld otoscopy requires both technical and diagnostic skills, and is often reported to be insufficient after medical training. We aimed to develop and gather validity evidence for an assessment tool for handheld otoscopy using contemporary medical educational standards.
STUDY DESIGN: Educational study.
SETTING: University/teaching hospital.
SUBJECTS AND METHODS: A structured Delphi methodology was used to develop the assessment tool: nine key opinion leaders (otologists) in undergraduate training of otoscopy iteratively achieved consensus on the content. Next, validity evidence was gathered by the video-taped assessment of two handheld otoscopy performances of 15 medical students (novices) and 11 specialists in otorhinolaryngology using two raters. Standard setting (pass/fail criteria) was explored using the contrasting groups and Angoff methods.
RESULTS: The developed Copenhagen Assessment Tool of Handheld Otoscopy Skills (CATHOS) consists 10 items rated using a 5-point Likert scale with descriptive anchors. Validity evidence was collected and structured according to Messick’s framework: for example the CATHOS had excellent discriminative validity (mean difference in performance between novices and experts 20.4 out of 50 points, p<0.001); and high internal consistency (Cronbach’s alpha=0.94). Finally, a pass/fail score was established at 30 points for medical students and 42 points for specialists in ORL.
CONCLUSION: We have developed and gathered validity evidence for an assessment tool of technical skills of handheld otoscopy and set standards of performance. Standardized assessment allows for individualized learning to the level of proficiency and could be implemented in under- and postgraduate handheld otoscopy training curricula, and is also useful in evaluating training interventions.