Publication Types:

Sort by year:

Mastoidectomy training—is anatomical variation needed? A randomized, controlled trial on performance and skills transfer from Virtual Reality to a 3D-printed model

Directed self-regulated learningInstructional designMastoidectomyTemporal bone surgeryVR simulation
Arnesen KA, Frithioff A, Sørensen MS, Andersen SA, Frendø M.
Otol Neurotol. 2022; May 11 [Accepted].
Publication year: 2022

Effect of 3D-Printed Models on Cadaveric Dissection in Temporal Bone Training

3D-printingDirected self-regulated learningMastoidectomyTemporal bone surgery
Frithioff A, Frendø M, Weiss K, Foghsgaard S, Pedersen DB, Sørensen MS, Andersen SAW.
OTO Open. 2021 Dec 13;5(4):2473974X211065012.
Publication year: 2022

Objective: Mastoidectomy is a cornerstone in the surgical management of middle and inner ear diseases. Unfortunately, training is challenged by insufficient access to human cadavers. Three-dimensional (3D) printing of temporal bones could alleviate this problem, but evidence on their educational effectiveness is lacking. It is largely unknown whether training on 3D-printed temporal bones improves mastoidectomy performance, including on cadavers, and how this training compares with virtual reality (VR) simulation. To address this knowledge gap, this study investigated whether training on 3D-printed temporal bones improves cadaveric dissection performance, and it compared this training with the already-established VR simulation.

Study design: Prospective cohort study of an educational intervention.

Setting: Tertiary university hospital, cadaver dissection laboratory, and simulation center in Copenhagen, Denmark.

Methods: Eighteen otorhinolaryngology residents (intervention) attending the national temporal bone dissection course received 3 hours of mastoidectomy training on 3D-printed temporal bones. Posttraining cadaver mastoidectomy performances were rated by 3 experts using a validated assessment tool and compared with those of 66 previous course participants (control) who had received time-equivalent VR training prior to dissection.

Results: The intervention cohort outperformed the controls during cadaver dissection by 29% (P < .001); their performances were largely similar across training modalities but remained at a modest level (~50% of the maximum score).

Conclusion: Mastoidectomy skills improved from training on 3D-printed temporal bone and seemingly more so than on time-equivalent VR simulation. Importantly, these skills transferred to cadaveric dissection. Training on 3D-printed temporal bones can effectively supplement cadaver training when learning mastoidectomy.

Keywords: 3D printing; additive manufacturing; education; mastoidectomy; neurotology; otology; rapid prototyping; surgical simulation; temporal bone; training.

Cochlear implantation: Exploring the effects of 3D stereovision in a digital microscope for virtual reality simulation training - A randomized controlled trial

Cochlear implantsDirected self-regulated learningOtologyTemporal bone surgeryVR simulation
Frithioff A, Frendø M, Mikkelsen PT, Sørensen MS, Andersen SAW.
Cochlear Implants Int. 2022 Mar;23(2):80-86.
Publication year: 2022

Background: In cochlear implantation (CI), excellent surgical technique is critical for hearing outcomes. Recent advances in temporal bone Virtual Reality (VR) training allow for specific training of CI and through introduction of new digital microscopes with ultra-high-fidelity (UHF) graphics. This study aims to investigate whether UHF increases performance in VR simulation training of CI electrode insertion compared with conventional, screen-based VR (cVR).

Methods: Twenty-four medical students completed a randomized, controlled trial of an educational intervention. They performed a total of eight CI electrode insertions each in blocks of four using either UHF-VR or cVR, in randomized order. CI electrode insertion performances were rated by two blinded expert raters using a structured assessment tool supported by validity evidence.

Results: Performance scores in cVR were higher than in the UHF-VR simulation although this was not significant (19.8 points, 95% CI [19.3-20.3] vs. 18.8 points, 95% CI [18.2-19.4]; = 0.09). The decisive factor for performance was participants’ ability to achieve stereovision (mean difference = 1.1 points, 95% CI [0.15-2.08], = 0.02).

Discussion: No additional benefit was found from UHF-VR over cVR training of CI electrode insertion for novices. Consequently, standard cVR simulation should be used for novices’ basic skills acquisition in CI surgery. Future studies should instead explore the effects of other improvements in CI surgery training and if the lacking benefit of UHF-VR also applies for more experienced learners.

Conclusion: The increased graphical perception and the superior lifelikeness of UHF-VR does not improve early skills acquisition of CI insertion for novices.

Keywords: Cochlear implantation; Simulation-based surgical training; Virtual reality simulation.

Am I doing this right? Structured self-assessment during simulation training of mastoidectomy improves cadaver dissection performance: a prospective educational study

AssessmentDirected self-regulated learningInstructional designLearning toolsMastoidectomyTemporal bone surgeryVR simulation
Andersen SA, Frithioff A, von Buchwald JH, Sørensen MS, Frendø M.
Eur Arch Otorhinolaryngol. 2022 May 16 [Accepted].
Publication year: 2022

Purpose: Temporal bone surgery requires excellent surgical skills and simulation-based training can aid novices’ skills acquisition. However, simulation-based training is challenged by early stagnation of the learning after relatively few performances. Structured self-assessment during practice might enhance learning by inducing reflection and engagement in the learning task. In this study, structured self-assessment was introduced during virtual reality (VR) simulation of mastoidectomy to investigate the effects on subsequent performance during cadaveric dissection.

Methods: This was a prospective educational study with comparison with historical controls (reference cohort). At a temporal bone dissection course, eighteen participants performed structured self-assessment during three hours of VR simulation training of mastoidectomy before proceeding to cadaver dissection/surgery (intervention cohort). At a previous course, eighteen participants received similar VR simulation training but without the structured self-assessment (reference cohort). Final products from VR simulation and cadaveric dissection were video-recorded and assessed by two blinded raters using a 19-point modified Welling Scale.

Results: The intervention cohort completed fewer procedures (average 4.2) during VR simulation training than the reference cohort (average 5.7). Nevertheless, the intervention cohort achieved a significantly higher average dissection score both in VR simulation (11.1 points, 95% CI [10.6–11.5]) and subsequent cadaveric dissection (11.8 points, 95% CI [10.7–12.8]) compared with the reference cohort who scored 9.1 points (95% CI [8.7–9.5]) during VR simulation and 5.8 points (95% CI [4.8–6.8]) during cadaveric dissection.

Conclusion: Structured self-assessment is a valuable learning support during self-directed VR simulation training of mastoidectomy and the positive effect on performance transfers to subsequent cadaveric dissection performance.

Content validity evidence for a simulation-based test of handheld otoscopy skills

ArticleAssessmentDirected self-regulated learningOtologyOtoscopy
von Buchwald JH, Frendø M, Guldager MJ, Melchiors J, Andersen SA
Eur Arch Otorhinolaryngol. 2021 Jul;278(7):2313-2320.
Publication year: 2021

Purpose: At graduation from medical school, competency in otoscopy is often insufficient. Simulation-based training can be used to improve technical skills, but the suitability of the training model and assessment must be supported by validity evidence. The purpose of this study was to collect content validity evidence for a simulation-based test of handheld otoscopy skills.

Methods: First, a three-round Delphi study was conducted with a panel of nine clinical teachers in otorhinolaryngology (ORL) to determine the content requirements in our educational context. Next, the authenticity of relevant cases in a commercially available technology-enhanced simulator (Earsi, VR Magic, Germany) was evaluated by specialists in ORL. Finally, an integrated course was developed for the simulator based on these results.

Results: The Delphi study resulted in nine essential diagnoses of normal variations and pathologies that all junior doctors should be able to diagnose with a handheld otoscope. Twelve out of 15 tested simulator cases were correctly recognized by at least one ORL specialist. Fifteen cases from the simulator case library matched the essential diagnoses determined by the Delphi study and were integrated into the course.

Conclusion: Content validity evidence for a simulation-based test of handheld otoscopy skills was collected. This informed a simulation-based course that can be used for undergraduate training. The course needs to be further investigated in relation to other aspects of validity and for future self-directed training.

Cochlear Implant Surgery: Learning Curve in Virtual Reality Simulation Training and Transfer of Skills to a 3D-printed Temporal Bone—a prospective Trial.

3D-printingAssessmentCochlear implantsDirected self-regulated learningOtologyTechnical skillsTemporal bone surgeryVR simulation
Frendø M, Frithioff A, Konge L, Sørensen MS, Andersen SA
Cochlear Implants Int . 2021 Nov;22(6):330-337.
Publication year: 2021

Objective: Mastering Cochlear Implant (CI) surgery requires repeated practice, preferably initiated in a safe – i.e. simulated – environment. Mastoidectomy Virtual Reality (VR) simulation-based training (SBT) is effective, but SBT of CI surgery largely uninvestigated. The learning curve is imperative for understanding surgical skills acquisition and developing competency-based training. Here, we explore learning curves in VR SBT of CI surgery and transfer of skills to a 3D-printed model.

Methods: Prospective, single-arm trial. Twenty-four novice medical students completed a pre-training CI inserting test on a commercially available pre-drilled 3D-printed temporal bone. A training program of 18 VR simulation CI procedures was completed in the Visual Ear Simulator over four sessions. Finally, a post-training test similar to the pre-training test was completed. Two blinded experts rated performances using the validated Cochlear Implant Surgery Assessment Tool (CISAT). Performance scores were analyzed using linear mixed models.

Results: Learning curves were highly individual with primary performance improvement initially, and small but steady improvements throughout the 18 procedures. CI VR simulation performance improved 33% (p < 0.001). Insertion performance on a 3D-printed temporal bone improved 21% (p < 0.001), demonstrating skills transfer.

Discussion: VR SBT of CI surgery improves novices’ performance. It is useful for introducing the procedure and acquiring basic skills. CI surgery training should pivot on objective performance assessment for reaching pre-defined competency before cadaver – or real-life surgery. Simulation-based training provides a structured and safe learning environment for initial training.

Conclusion: CI surgery skills improve from VR SBT, which can be used to learn the fundamentals of CI surgery.

Automated summative feedback improves performance and retention in simulation training of mastoidectomy: A randomised, controlled trial

AssessmentDirected self-regulated learningLearning supportsTemporal bone surgeryVR simulation
Frithioff A, Frendø M, Buchwald JH, Mikkelsen PT, Sørensen MS, Andersen SA
J Laryngol Otol. 2022 Jan;136(1):29-36.
Publication year: 2021

Objective: This study aimed to investigate the effects of automated metrics-based summative feedback on performance, retention and cognitive load in distributed virtual reality simulation training of mastoidectomy.

Method: Twenty-four medical students were randomised in two groups and performed 15 mastoidectomies on a distributed virtual reality simulator as practice. The intervention group received additional summative metrics-based feedback; the control group followed standard instructions. Two to three months after training, participants performed a retention test without learning supports.

Results: The intervention group had a better final-product score (mean difference = 1.0 points; p = 0.001) and metrics-based score (mean difference = 12.7; p < 0.001). At retention, the metrics-based score for the intervention group remained superior (mean difference = 6.9 per cent; p = 0.02). Also at the retention, cognitive load was higher in the intervention group (mean difference = 10.0 per cent; p < 0.001).

Conclusion: Summative metrics-based feedback improved performance and lead to a safer and faster performance compared with standard instructions and seems a valuable educational tool in the early acquisition of temporal bone skills.

The effect of simulator-integrated tutoring for guidance in virtual reality simulation training

ArticleAssessmentDirected self-regulated learningInstructional designLearning supportsSurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Sørensen MS
Simul Healthc. 2020 Jun;15(3):147-153.
Publication year: 2020

INTRODUCTION: Simulation-integrated tutoring in virtual reality (VR) simulation training by green-lighting is a common learning support in simulation-based temporal bone surgical training. However, tutoring overreliance can negatively affect learning. We therefore wanted to investigate the effects of simulator-integrated tutoring on performance and learning.

METHODS: A prospective, educational cohort study of a learning intervention (simulator-integrated tutoring) during repeated and distributed VR simulation training for directed, self-regulated learning of the mastoidectomy procedure. Two cohorts of novices (medical students) were recruited: 16 participants were trained using the intervention program (intermittent simulator-integrated tutoring) and 14 participants constituted a non-tutored reference cohort. Outcomes were final-product performance assessed by two blinded raters, and simulator-recorded metrics.

RESULTS: Simulator-integrated tutoring had a large and positive effect on the final-product performance while turned on (mean difference 3.8 points, p<0.0001). However, this did not translate to a better final-product performance in subsequent non-tutored procedures. The tutored cohort had a better metrics-based score, reflecting higher efficiency of drilling (mean difference 3.6 %, p=0.001). For the individual metrics, simulator-integrated tutoring had mixed effects both during procedures and on the tutored cohort in general (learning effect).

CONCLUSIONS: Simulator-integrated tutoring by green-lighting did not induce a better final-product performance but increased efficiency. The mixed effects on learning could be caused by tutoring overreliance, resulting from a lack of cognitive engagement when the tutor-function is on. Further learning strategies such as feedback should be explored to support novice learning and cognitive engagement.

Effects on cognitive load of tutoring in virtual reality simulation training

ArticleCognitive loadDirected self-regulated learningInstructional designLearning supportsOtologyTemporal bone surgeryVR simulation
Andersen SA, Frendø M, Sørensen MS.
MedEdPublish. 2020;9(1):51.
Publication year: 2020

Aims: According to the guidance hypothesis, tutoring during technical skills training can result in tutoring over-reliance, reflected in a negative effect on performance when tutoring is discontinued. In this study, we wanted to explore if similar effects would be found for cognitive load.

Methods: Two cohorts of novice medical students were recruited for distributed virtual simulation training (five practice blocks of three procedures): 16 participants received intermittent simulator-integrated tutoring and 14 participants served as a reference cohort and did not receive simulator-integrated tutoring. Cognitive load during simulation was estimated using secondary task reaction time. Linear mixed models were used to account for repeated measurements.

Results: Overall, the tutored cohort had a significantly higher cognitive load than the reference cohort (mean difference = 7 %, p=0.006). Simulator-integrated tutoring did seem to lower cognitive load when active but also caused the tutored cohort to have a substantially higher cognitive load in subsequent performances where it was turned off (mean difference = 7 %, respectively, p<<0.001).

Conclusions: Concurrent feedback by simulator-integrated tutoring causes tutoring over-reliance and modifies cognitive load. This suggests that tutoring, in addition to degrading motor skills learning also affects the cognitive processes involved.

The effect of structured self-assessment in virtual reality simulation training of mastoidectomy.

ArticleAssessmentDirected self-regulated learningInstructional designLearning supportsSurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Guldager M, Mikkelsen PT, Sørensen MS
Eur Arch Otorhinolaryngol. 2019;276(12):3345–3352.
Publication year: 2019

PURPOSE: Virtual reality (VR) simulation surgical skills training is well established, but self-directed practice is often associated with a learning curve plateau. In this study, we investigate the effects of structured self-assessment as a means to improve performance in mastoidectomy training.

METHODS: The study was a prospective, educational study. Two cohorts of novices (medical students) were recruited for practice of anatomical mastoidectomy in a training program with five distributed training blocks. Fifteen participants performed structured self-assessment after each procedure (intervention cohort). A reference cohort of another 14 participants served as controls. Performances were assessed by two blinded raters using a modified Welling Scale and simulator-recorded metrics.

RESULTS: The self-assessment cohort performed superiorly to the reference cohort (mean difference of final product score 0.87 points, p = 0.001) and substantially reduced the number of repetitions needed. The self-assessment cohort also had more passing performances for the combined metrics-based score reflecting increased efficiency. Finally, the self-assessment cohort made fewer collisions compared with the reference cohort especially with the chorda tympani, the facial nerve, the incus, and the malleus.

CONCLUSIONS: VR simulation training of surgical skills benefits from having learners perform structured self-assessment following each procedure as this increases performance, accelerates the learning curve thereby reducing time needed for training, and induces a safer performance with fewer collisions with critical structures. Structured self-assessment was in itself not sufficient to counter the learning curve plateau and for continued skills development additional supports for deliberate practice are needed.

Decentralized Virtual Reality Training of Mastoidectomy Improves Cadaver Dissection Performance: A Prospective, Controlled Cohort Study

ArticleDirected self-regulated learningInstructional designMastoidectomySurgical trainingTemporal bone surgeryVR simulation
Frendø M, Cayé-Thomasen P, Konge L, Sørensen MS, Andersen SA.
Otol Neurotol. 2020 Apr;41(4):476–481.
Publication year: 2019

OBJECTIVE: Virtual reality (VR) simulation training can improve temporal bone (TB) cadaver dissection skills and distributed, self-regulated practice is optimal for skills consolidation. Decentralized training (DT) at the trainees’ own department or home offers more convenient access compared with centralized VR simulation training where the simulators are localized at one facility. The effect of DT in TB surgical training is unknown. We investigated the effect of decentralized VR simulation training of TB surgery on subsequent cadaver dissection performance.

STUDY DESIGN: Prospective, controlled cohort study.

SETTING: Otorhinolaryngology (ORL) teaching hospitals and the Danish national TB course.

PARTICIPANTS: Thirty-eight ORL residents: 20 in the intervention cohort (decentralized training) and 18 in the control cohort (standard training during course).

INTERVENTION: Three months of access to decentralized VR simulation training at the local ORL department or the trainee’s home. A freeware VR simulator (the visible ear simulator [VES]) was used, supplemented by a range of learning supports for directed, self-regulated learning.

MAIN OUTCOME MEASURE: Mastoidectomy final-product scores from the VR simulations and cadaver dissection were rated using a modified Welling Scale by blinded expert raters.

RESULTS: Participants in the intervention cohort trained decentrally a median of 3.5 hours and performed significantly better than the control cohort during VR simulation (p < 0.01), which importantly also transferred to a 76% higher performance score during subsequent cadaver training (mean scores: 8.8 versus 5.0 points; p < 0.001).

CONCLUSIONS: Decentralized VR simulation training of mastoidectomy improves subsequent cadaver dissection performance and can potentially improve implementation of VR simulation surgical training.

Decentralized Virtual Reality Mastoidectomy Simulation Training: A Prospective, Mixed-Methods Study

ArticleDirected self-regulated learningInstructional designLearning supportsSurgical trainingTemporal bone surgeryVR simulation
Frendø M, Thinggaard E, Konge L, Sørensen MS, Andersen SA.
Eur Arch Otorhinolaryngol. 2019;276(10):2783–2789.
Publication year: 2019

PURPOSE: Virtual reality (VR) training of mastoidectomy is effective in surgical training-particularly if organized as distributed practice. However, centralization of practice facilities is a barrier to implementation of distributed simulation training. Decentralized training could be a potential solution. Here, we aim to assess the feasibility, use, and barriers to decentralized VR mastoidectomy training using a freeware, high-fidelity temporal bone simulator.

METHODS: In a prospective, mixed-methods study, 20 otorhinolaryngology residents were given three months of local access to a VR mastoidectomy simulator. Additionally, trainees were provided a range of learning supports for directed, self-regulated learning. Questionnaire data were collected and focus group interviews conducted. The interviews were analyzed using thematic analysis and compared with quantitative findings.

RESULTS: Participants trained 48.5 h combined and mainly towards the end of the trial. Most participants used between two and four different learning supports. Qualitative analysis revealed five main themes regarding implementation of decentralized simulation training: convenience, time for training, ease of use, evidence for training, and testing.

CONCLUSIONS: Decentralized VR training using a freeware, high-fidelity mastoidectomy simulator is feasible but did not lead to a high training volume or truly distributed practice. Evidence for training was found motivational. Access to training, educational designs, and the role of testing are important for participant motivation and require further evaluation.

Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial

ArticleCognitive loadDirected self-regulated learningImmersive simulationInstructional designSurgical trainingVR simulation
Frederiksen JG, Sørensen SM, Konge L, Svendsen MB, Nobel-Jørgensen M, Bjerrum F, Andersen SA.
Surg Endosc. 2020;34(3):1244–1252.
Publication year: 2019

BACKGROUND: Virtual reality simulators combined with head-mounted displays enable highly immersive virtual reality (VR) for surgical skills training, potentially bridging the gap between the simulation environment and real-life operating room conditions. However, the increased complexity of the learning situation in immersive VR could potentially induce high cognitive load thereby inhibiting performance and learning. This study aims to compare cognitive load and performance in immersive VR and conventional VR simulation training.

METHODS: A randomized controlled trial of residents (n = 31) performing laparoscopic salpingectomies with an ectopic pregnancy in either immersive VR or conventional VR simulation. Cognitive load was estimated by secondary-task reaction time at baseline, and during nonstressor and stressor phases of the procedure. Simulator metrics were used to evaluate performance.

RESULTS: Cognitive load was increased by 66% and 58% during immersive VR and conventional VR simulation, respectively (p < 0.001), compared to baseline. A light stressor induced a further increase in cognitive load by 15.2% and a severe stressor by 43.1% in the immersive VR group compared to 23% (severe stressor) in the conventional VR group. Immersive VR also caused a significantly worse performance on most simulator metrics.

CONCLUSION: Immersive VR simulation training induces a higher cognitive load and results in a poorer performance than conventional VR simulation training in laparoscopy. High extraneous load and element interactivity in the immersive VR are suggested as mechanisms explaining this finding. However, immersive VR offers some potential advantages over conventional VR such as more real-life conditions but we only recommend introducing immersive VR in surgical skills training after initial training in conventional VR.

The effect of distributed virtual reality simulation training on cognitive load during subsequent dissection training

ArticleCognitive loadDirected self-regulated learningInstructional designSurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Konge L, Sørensen MS.
Med Teach. 2018;40(7):684–689.
Publication year: 2018

BACKGROUND: Complex tasks such as surgical procedures can induce excessive cognitive load (CL), which can have a negative effect on learning, especially for novices.

AIM: To investigate if repeated and distributed virtual reality (VR) simulation practice induces a lower CL and higher performance in subsequent cadaveric dissection training.

METHODS: In a prospective, controlled cohort study, 37 residents in otorhinolaryngology received VR simulation training either as additional distributed practice prior to course participation (intervention) (9 participants) or as standard practice during the course (control) (28 participants). Cognitive load was estimated as the relative change in secondary-task reaction time during VR simulation and cadaveric procedures.

RESULTS: Structured distributed VR simulation practice resulted in lower mean reaction times (32% vs. 47% for the intervention and control group, respectively, p < 0.01) as well as a superior final-product performance during subsequent cadaveric dissection training.

CONCLUSIONS: Repeated and distributed VR simulation causes a lower CL to be induced when the learning situation is increased in complexity. A suggested mechanism is the formation of mental schemas and reduction of the intrinsic CL. This has potential implications for surgical skills training and suggests that structured, distributed training be systematically implemented in surgical training curricula.

The Effect of a Distributed Virtual Reality Simulation Training Program on Dissection Mastoidectomy Performance

ArticleDirected self-regulated learningInstructional designMastoidectomySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Foghsgaard S, Cayé-Thomasen P, Sørensen MS.
Otol. Neurotol. 2018;39(10):1277–1284.
Publication year: 2018

OBJECTIVE: To investigate the effect on final-product performance of a distributed, virtual reality (VR) simulation training program on cadaveric dissection performance and learning curves compared with standard VR simulation training during a temporal bone course.

STUDY DESIGN: Educational interventional cohort study.

SETTING: The national Danish temporal bone courses of 2016 and 2017.

SUBJECTS: Postgraduate year 2 to 5 residents in otorhinolaryngology.

INTERVENTION: Nine participants volunteered for additional VR simulation training (intervention) before the temporal bone course, with training blocks distributed (i.e., separated). The remaining 28 participants received standard VR simulation training during the temporal bone course (control).

MAIN OUTCOME MEASURE: VR simulation and cadaveric dissection final-product performances were analyzed by blinded raters using a 26-item modified Welling Scale.

RESULTS: Distributed VR simulation training before the temporal bone course (intervention) significantly increased dissection final-product performance by 25% compared with standard VR simulation training during the course (control) (mean scores 12.8 points versus 10.3 points, p < 0.01). Distributed and repeated VR simulation practice markedly decreased drilling time. Guidance by the simulator-integrated tutor-function significantly increased final-product performance by 2.3 points compared with nontutored procedures but at the cost of increased drilling time.

CONCLUSION: Skills acquired in a VR simulation environment translate to cadaveric dissection skills and repeated and distributed VR simulation can be used to further increase performance compared with standard VR simulation training during a temporal bone course. Further dissemination of inexpensive VR simulators would allow all future temporal bone course participants to train locally before attending future centralized courses.

Mapping the plateau of novices in virtual reality simulation training of mastoidectomy

ArticleDirected self-regulated learningLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Konge L, Mikkelsen PT, Cayé-Thomasen P, Sørensen MS.
Laryngoscope. 2017;127(4):907–914.
Publication year: 2017

OBJECTIVES/HYPOTHESIS: To explore why novices’ performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved.

STUDY DESIGN: Prospective study.

METHODS: Data on the performances of 40 novices who had completed repeated, directed, self-regulated VR simulation training of mastoidectomy were included. Data were analyzed to identify key areas of difficulty as well as the procedures terminated without using all the time allowed.

RESULTS: Novices had difficulty in avoiding drilling holes in the outer anatomical boundaries of the mastoidectomy and frequently made injuries to vital structures such as the lateral semicircular canal, the ossicles, and the facial nerve. The simulator-integrated tutor function improved performance on many of these items, but overreliance on tutoring was observed. Novices also demonstrated poor self-assessment skills and often did not make use of the allowed time, lacking knowledge on when to stop or how to excel.

CONCLUSION: Directed, self-regulated VR simulation training of mastoidectomy needs a strong instructional design with specific process goals to support deliberate practice because cognitive effort is needed for novices to improve beyond an initial plateau.

Virtual reality simulation training of mastoidectomy - studies on novice performance

Virtual reality (VR) simulation-based training is increasingly used in surgical technical skills training including in temporal bone surgery. The potential of VR simulation in enabling high-quality surgical training is great and VR simulation allows high-stakes and complex procedures such as mastoidectomy to be trained repeatedly, independent of patients and surgical tutors, outside traditional learning environments such as the OR or the temporal bone lab, and with fewer of the constraints of traditional training. This thesis aims to increase the evidence-base of VR simulation training of mastoidectomy and, by studying the final-product performances of novices, investigates the transfer of skills to the current gold-standard training modality of cadaveric dissection, the effect of different practice conditions and simulator-integrated tutoring on performance and retention of skills, and the role of directed, self-regulated learning. Technical skills in mastoidectomy were transferable from the VR simulation environment to cadaveric dissection with significant improvement in performance after directed, self-regulated training in the VR temporal bone simulator. Distributed practice led to a better learning outcome and more consolidated skills than massed practice and also resulted in a more consistent performance after three months of non-practice. Simulator-integrated tutoring accelerated the initial learning curve but also caused over-reliance on tutoring, which resulted in a drop in performance when the simulator-integrated tutor-function was discontinued. The learning curves were highly individual but often plateaued early and at an inadequate level, which related to issues concerning both the procedure and the VR simulator, over-reliance on the tutor function and poor self-assessment skills. Future simulator-integrated automated assessment could potentially resolve some of these issues and provide trainees with both feedback during the procedure and immediate assessment following each procedure. Standard setting by establishing a proficiency level that can be used for mastery learning with deliberate practice could also further sophisticate directed, self-regulated learning in VR simulation-based training. VR simulation-based training should be embedded in a systematic and competency-based training curriculum for high-quality surgical skills training, ultimately leading to improved safety and patient care.

The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy

ArticleDirected self-regulated learningInstructional designMastoidectomyOtologyTemporal bone surgeryVR simulation
Andersen SA, Foghsgaard S, Konge L, Cayé-Thomasen P, Sørensen MS.
Laryngoscope. 2016;126(8):1883–1888.
Publication year: 2016

OBJECTIVES/HYPOTHESIS: To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting.

STUDY DESIGN: Prospective study.

METHODS: Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters.

RESULTS: The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P < 0.0001). A single dissection mastoidectomy did not increase VR simulation performance (P = 0.22).

CONCLUSIONS: Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment.

LEVEL OF EVIDENCE: NA.

The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

ArticleCognitive loadDirected self-regulated learningInstructional designLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Konge L, Cayé-Thomasen P, Sørensen MS.
Adv Simul (Lond). 2016;1: 20.
Publication year: 2016

BACKGROUND: Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy.

METHODS: Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances.

RESULTS: Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005).

CONCLUSIONS: Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

Retention of Mastoidectomy Skills After Virtual Reality Simulation Training

ArticleDirected self-regulated learningLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Konge L, Cayé-Thomasen P, Sørensen MS.
JAMA Otolaryngol Head Neck Surg. 2016;142(7):635–640.
Publication year: 2016

IMPORTANCE: The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training.

OBJECTIVES: To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants’ cognitive load during retention procedures.

DESIGN, SETTING, AND PARTICIPANTS: A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice.

INTERVENTIONS: Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed).

MAIN OUTCOMES AND MEASURES: Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task.

RESULTS: Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean pretraining relative reaction time, 1.42 [95% CI, 1.37-1.47]; mean end of training relative reaction time, 1.24 [95% CI, 1.16-1.32]; and mean retention relative reaction time, 1.36 [95% CI, 1.30-1.42]; massed practice group: mean pretraining relative reaction time, 1.34 [95% CI, 1.28-1.40]; mean end of training relative reaction time, 1.31 [95% CI, 1.21-1.42]; and mean retention relative reaction time, 1.39 [95% CI, 1.31-1.46]) indicated that cognitive load during the virtual procedures had returned to the pretraining level.

CONCLUSIONS AND RELEVANCE: Mastoidectomy skills acquired under time-distributed practice conditions were retained better than skills acquired under massed practice conditions. Complex psychomotor skills should be regularly reinforced to consolidate both motor and cognitive aspects. Virtual reality simulation training provides the opportunity for such repeated training and should be integrated into training curricula.

Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared

ArticleCognitive loadDirected self-regulated learningSurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Konge L, Cayé-Thomasen P, Sørensen MS.
J Surg Educ. 2016;73(1):45–50.
Publication year: 2016

OBJECTIVE: The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy.

DESIGN: A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities.

SETTING: The national Danish temporal bone course.

PARTICIPANTS: A total of 40 novice otorhinolaryngology residents.

RESULTS: Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001).

CONCLUSIONS: VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation.

Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice

ArticleAssessmentDirected self-regulated learningInstructional designLearning supportsMastoidectomyTemporal bone surgeryVR simulation
Andersen SA, Konge L, Cayé-Thomasen P, Sørensen MS.
JAMA Otolaryngol Head Neck Surg, 2015;141(10):913–918.
Publication year: 2015

IMPORTANCE: Repeated and deliberate practice is crucial in surgical skills training, and virtual reality (VR) simulation can provide self-directed training of basic surgical skills to meet the individual needs of the trainee. Assessment of the learning curves of surgical procedures is pivotal in understanding skills acquisition and best-practice implementation and organization of training.

OBJECTIVE: To explore the learning curves of VR simulation training of mastoidectomy and the effects of different practice sequences with the aim of proposing the optimal organization of training.

DESIGN, SETTING, AND PARTICIPANTS: A prospective trial with a 2 × 2 design was conducted at an academic teaching hospital. Participants included 43 novice medical students. Of these, 21 students completed time-distributed practice from October 14 to November 29, 2013, and a separate group of 19 students completed massed practice on May 16, 17, or 18, 2014. Data analysis was performed from June 6, 2014, to March 3, 2015.

INTERVENTIONS: Participants performed 12 repeated virtual mastoidectomies using a temporal bone surgical simulator in either a distributed (practice blocks spaced in time) or massed (all practice in 1 day) training program with randomization for simulator-integrated tutoring during the first 5 sessions.

MAIN OUTCOMES AND MEASURES: Performance was assessed using a modified Welling Scale for final product analysis by 2 blinded senior otologists.

RESULTS: Compared with the 19 students in the massed practice group, the 21 students in the distributed practice group were older (mean age, 25.1 years), more often male (15 [62%]), and had slightly higher mean gaming frequency (2.3 on a 1-5 Likert scale). Learning curves were established and distributed practice was found to be superior to massed practice, reported as mean end score (95% CI) of 15.7 (14.4-17.0) in distributed practice vs. 13.0 (11.9-14.1) with massed practice (P = .002). Simulator-integrated tutoring accelerated the initial performance, with mean score for tutored sessions of 14.6 (13.9-15.2) vs. 13.4 (12.8-14.0) for corresponding nontutored sessions (P < .01) but at the cost of a drop in performance once tutoring ceased. The performance drop was less with distributed practice, suggesting a protective effect when acquired skills were consolidated over time. The mean performance of the nontutored participants in the distributed practice group plateaued on a score of 16.0 (15.3-16.7) at approximately the ninth repetition, but the individual learning curves were highly variable.

CONCLUSIONS AND RELEVANCE: Novices can acquire basic mastoidectomy competencies with self-directed VR simulation training. Training should be organized with distributed practice, and simulator-integrated tutoring can be useful to accelerate the initial learning curve. Practice should be deliberate and toward a standard set level of proficiency that remains to be defined rather than toward the mean learning curve plateau.