Purpose: The aim of this study was to investigate and compare the use of simulation-based technical skills training (SBTST) in the otolaryngology curriculum in different countries, and to explore the needs and opinions about the use of simulation among young otolaryngologists.
Methods: An e-survey conducted among Young Otolaryngologists of the International Federation of Oto-rhino-laryngological Societies (Yo-IFOS) members.
Results: 139 Yo-IFOS members from 51 countries completed the survey. During residency training, 82.7% of respondents have used SBTST on cadavers, 51.8% on physical simulators, and 43.8% on virtual reality simulators. High costs (65.5%), lack of availability (49.2%) and lack of time (25.5%) were the main barriers limiting the practice of SBTST. These barriers also limited teaching using simulation. Sinonasal surgery (72.7%), temporal bone surgery (67.6%), and head/neck surgery (44.6%) were significantly more frequently taught using SBTST than suspension microlaryngoscopy (25.9%) and pediatric surgery (22.3%) (p < 0.001). The procedures rated as the most important to learn through SBTST were tracheotomy (50.4%), emergency cricothyroidotomy (48.9%), and rigid bronchoscopy (47.5%). On an analogic visual scale (0-100) for the question “how important will simulation be for future ENTs in surgical training?”, the mean score was 79.5/100 (± 23.3), highlighting the positive attitude toward the use of SBTST in otorhinolaryngology training.
Conclusion: SBTST is an attractive learning and teaching method in otorhinolaryngology, but associated costs, lack of access, and lack of time are the main barriers limiting its use. Emergency procedures are key technical skills to be learned using simulation but in some cases, lack relevant simulators for training.
Objectives: Patient-specific surgical simulation allows presurgical planning through three-dimensional (3D) visualization and virtual rehearsal. Virtual reality simulation for otologic surgery can be based on high-resolution cone-beam computed tomography (CBCT). This study aimed to evaluate clinicians’ experience with patient-specific simulation of mastoid surgery.
Methods: Prospective, multi-institutional study. Preoperative temporal bone CBCT scans of patients undergoing cochlear implantation (CI) were retrospectively obtained. Automated processing and segmentation routines were used. Otologic surgeons performed a complete mastoidectomy with facial recess approach on the patient-specific virtual cases in the institution’s temporal bone simulator. Participants completed surveys regarding the perceived accuracy and utility of the simulation.
Results: Twenty-two clinical CBCTs were obtained. Four attending otologic surgeons and 5 otolaryngology trainees enrolled in the study. The mean number of simulations completed by each participant was 16.5 (range 3-22). “Overall experience” and “usefulness for presurgical planning” were rated as “good,” “very good,” or “excellent” in 84.6% and 71.6% of the simulations, respectively. In 10.7% of simulations, the surgeon reported to have gained a significantly greater understanding of the patient’s anatomy compared to standard imaging. Participants were able to better appreciate subtle anatomic findings after using the simulator for 60.4% of cases. Variable CBCT acquisition quality was the most reported limitation.
Conclusion: Patient-specific simulation using preoperative CBCT is feasible and may provide valuable insights prior to otologic surgery. Establishing a CBCT acquisition protocol that allows for consistent segmentation will be essential for reliable surgical simulation.
Objective: Otoscopy is a frequently performed procedure and competency in this skill is important across many specialties. We aim to systematically review current medical educational evidence for training of handheld otoscopy skills.
Methods: Following the PRISMA guideline, studies reporting on training and/or assessment of handheld otoscopy were identified searching the following databases: PubMed, Embase, OVID, the Cochrane Library, PloS Medicine, Directory of Open Access Journal (DOAJ), and Web of Science. Two reviewers extracted data on study design, training intervention, educational outcomes, and results. Quality of educational evidence was assessed along with classification according to Kirkpatrick’s model of educational outcomes.
Results: The searches yielded a total of 6064 studies with a final inclusion of 33 studies for the qualitative synthesis. Handheld otoscopy training could be divided into workshops, physical simulators, web-based training/e-learning, and smartphone-enabled otoscopy. Workshops were the most commonly described educational intervention and typically consisted of lectures, hands-on demonstrations, and training on peers. Almost all studies reported a favorable effect on either learner attitude, knowledge, or skills. The educational quality of the studies was reasonable but the educational outcomes were mostly evaluated on the lower Kirkpatrick levels with only a single study determining the effects of training on actual change in the learner behavior.
Conclusion: Overall, it seems that any systematic approach to training of handheld otoscopy is beneficial in training regardless of learner level, but the heterogeneity of the studies makes comparisons between studies difficult and the relative effect sizes of the interventions could not be determined.
BACKGROUND: Cochlear implantation requires excellent surgical skills; virtual reality simulation training is an effective method for acquiring basic competency in temporal bone surgery before progression to cadaver dissection. However, cochlear implantation virtual reality simulation training remains largely unexplored and only one simulator currently supports the training of the cochlear implantation electrode insertion. Here, we aim to evaluate the effect of cochlear implantation virtual reality simulation training on subsequent cadaver dissection performance and self-directedness.
METHODS: This was a randomized, controlled trial. Eighteen otolaryngology residents were randomized to either mastoidectomy including cochlear implantation virtual reality simulation training (intervention) or mastoidectomy virtual reality simulation training alone (controls) before cadaver cochlear implantation surgery. Surgical performance was evaluated by two blinded expert raters using a validated, structured assess- ment tool. The need for supervision (reflecting self-directedness) was assessed via post-dissection questionnaires.
RESULTS: The intervention group achieved a mean score of 22.9 points of a maximum of 44 points, which was 5.4% higher than the control group’s 21.8 points (P = .51). On average, the intervention group required assistance 1.3 times during cadaver drilling; this was 41% more frequent in the control group who received assistance 1.9 times (P = .21).
CONCLUSION: Cochlear implantation virtual reality simulation training is feasible in the context of a cadaver dissection course. The addition of cochlear implantation virtual reality training to basic mastoidectomy virtual reality simulation training did not lead to a significant improvement of performance or self-directedness in this study. Our findings suggest that learning an advanced temporal bone procedure such as cochlear implantation surgery requires much more training than learning mastoidectomy.
Purpose: Competency-based education relies on the validity and reliability of assessment scores. Generalizability (G) theory is well suited to explore the reliability of assessment tools in medical education but has only been applied to a limited extent. This study aimed to systematically review the literature using G-theory to explore the reliability of structured assessment of medical and surgical technical skills and to assess the relative contributions of different factors to variance.
Method: In June 2020, 11 databases, including PubMed, were searched from inception through May 31, 2020. Eligible studies included the use of G-theory to explore reliability in the context of assessment of medical and surgical technical skills. Descriptive information on study, assessment context, assessment protocol, participants being assessed, and G-analyses were extracted. Data were used to map G-theory and explore variance components analyses. A meta-analyses was conducted to synthesize the extracted data on the sources of variance and reliability.
Results: Forty-four studies were included; of these, 39 had sufficient data for meta-analysis. The total pool included 35,284 unique assessments of 31,496 unique performances of 4,154 participants. Person variance had a pooled effect of 44.2% (95% confidence interval [CI] [36.8%-51.5%]). Only assessment tool type (Objective Structured Assessment of Technical Skills-type vs task-based checklist-type) had a significant effect on person variance. The pooled reliability (G-coefficient) was .65 (95% CI [.59-.70]). Most studies included D-studies (39, 89%) and generally seemed to have higher ratios of performances to assessors to achieve a sufficiently reliable assessment.
Conclusions: G-theory is increasingly being used to examine reliability of technical skills assessment in medical education but more rigor in reporting is warranted. Contextual factors can potentially affect variance components and thereby reliability estimates and should be considered, especially in high-stakes assessment. Reliability analysis should be a best practice when developing assessment of technical skills.
INTRODUCTION: Simulation-integrated tutoring in virtual reality (VR) simulation training by green-lighting is a common learning support in simulation-based temporal bone surgical training. However, tutoring overreliance can negatively affect learning. We therefore wanted to investigate the effects of simulator-integrated tutoring on performance and learning.
METHODS: A prospective, educational cohort study of a learning intervention (simulator-integrated tutoring) during repeated and distributed VR simulation training for directed, self-regulated learning of the mastoidectomy procedure. Two cohorts of novices (medical students) were recruited: 16 participants were trained using the intervention program (intermittent simulator-integrated tutoring) and 14 participants constituted a non-tutored reference cohort. Outcomes were final-product performance assessed by two blinded raters, and simulator-recorded metrics.
RESULTS: Simulator-integrated tutoring had a large and positive effect on the final-product performance while turned on (mean difference 3.8 points, p<0.0001). However, this did not translate to a better final-product performance in subsequent non-tutored procedures. The tutored cohort had a better metrics-based score, reflecting higher efficiency of drilling (mean difference 3.6 %, p=0.001). For the individual metrics, simulator-integrated tutoring had mixed effects both during procedures and on the tutored cohort in general (learning effect).
CONCLUSIONS: Simulator-integrated tutoring by green-lighting did not induce a better final-product performance but increased efficiency. The mixed effects on learning could be caused by tutoring overreliance, resulting from a lack of cognitive engagement when the tutor-function is on. Further learning strategies such as feedback should be explored to support novice learning and cognitive engagement.
Background: The aim of this study was to design and validate a cross-specialty basic robotic surgical skills training program on the RobotiX Mentor virtual reality simulator.
Methods: A Delphi panel reached consensus on six modules to include in the training program. Validity evidence was collected according to Messick’s framework with three performances in each simulator module by 11 experienced robotic surgeons and 11 residents without robotic surgical experience.
Results: For five of the six modules, a compound metrics-based score could significantly discriminate between the performances of novices and experienced robotic surgeons. Pass/fail levels were established, resulting in very few novices passing in their first attempt.
Conclusions: This validated course can be used for structured simulation-based basic robotic surgical skills training within a mastery learning framework where the individual trainee can practice each module until they achieve proficiency and can continue training on other modalities and more specific to their specialty.
OBJECTIVE: Self-directed training represents a challenge in simulation-based training as low cognitive effort can occur when learners overrate their own level of performance. This study aims to explore the mechanisms underlying the positive effects of a structured self-assessment intervention during simulation-based training of mastoidectomy.
METHODS: A prospective, educational cohort study of a novice training program consisting of directed, self-regulated learning with distributed practice (5×3 procedures) in a virtual reality temporal bone simulator. The intervention consisted of structured self-assessment after each procedure using a rating form supported by small videos. Semi-structured telephone interviews upon completion of training were conducted with 13 out of 15 participants. Interviews were analysed using directed content analysis and triangulated with quantitative data on secondary task reaction time for cognitive load estimation and participants’ self-assessment scores.
RESULTS: Six major themes were identified in the interviews: goal-directed behaviour, use of learning supports for scaffolding of the training, cognitive engagement, motivation from self-assessment, self-assessment bias, and feedback on self-assessment (validation). Participants seemed to self-regulate their learning by forming individual sub-goals and strategies within the overall goal of the procedure. They scaffolded their learning through the available learning supports. Finally, structured self-assessment was reported to increase the participants’ cognitive engagement, which was further supported by a quantitative increase in cognitive load.
CONCLUSIONS: Structured self-assessment in simulation-based surgical training of mastoidectomy seems to promote cognitive engagement and motivation in the learning task and to facilitate self-regulated learning.
PURPOSE: Virtual reality (VR) simulation surgical skills training is well established, but self-directed practice is often associated with a learning curve plateau. In this study, we investigate the effects of structured self-assessment as a means to improve performance in mastoidectomy training.
METHODS: The study was a prospective, educational study. Two cohorts of novices (medical students) were recruited for practice of anatomical mastoidectomy in a training program with five distributed training blocks. Fifteen participants performed structured self-assessment after each procedure (intervention cohort). A reference cohort of another 14 participants served as controls. Performances were assessed by two blinded raters using a modified Welling Scale and simulator-recorded metrics.
RESULTS: The self-assessment cohort performed superiorly to the reference cohort (mean difference of final product score 0.87 points, p = 0.001) and substantially reduced the number of repetitions needed. The self-assessment cohort also had more passing performances for the combined metrics-based score reflecting increased efficiency. Finally, the self-assessment cohort made fewer collisions compared with the reference cohort especially with the chorda tympani, the facial nerve, the incus, and the malleus.
CONCLUSIONS: VR simulation training of surgical skills benefits from having learners perform structured self-assessment following each procedure as this increases performance, accelerates the learning curve thereby reducing time needed for training, and induces a safer performance with fewer collisions with critical structures. Structured self-assessment was in itself not sufficient to counter the learning curve plateau and for continued skills development additional supports for deliberate practice are needed.
OBJECTIVE: To investigate validity evidence, and strengths and limitations of performance metrics in mastoidectomy training.
METHODS: A systematic review following the PRISMA guidelines. Studies reporting performance metrics in mastoidectomy/temporal bone surgery were included. Data on design, outcomes, and results were extracted by two reviewers. Validity evidence according to Messick’s framework and level of evidence were assessed.
RESULTS: The search yielded a total of 1085 studies from the years 1947-2018 and 35 studies were included for full data extraction after abstract and full-text screening. 33 different metrics on mastoidectomy performance were identified and ranked according to the number of reports. Most of the 33 metrics identified had some amount of validity evidence. The metrics with most validity evidence were related to drilling time, volume drilled per time, force applied near vital structures, and volume removed.
CONCLUSIONS: This review provides an overview of current metrics of mastoidectomy performance, their validity, strengths and limitations, and identifies the gap in validity evidence of some metrics. Evidence-based metrics can be used for performance assessment in temporal bone surgery and for providing integrated and automated feedback in virtual reality simulation training. The use of such metrics in simulation-based mastoidectomy training can potentially address some of the limitations in current temporal bone skill assessment and ease assessment in repeated practice. However, at present, an automated feedback based on metrics in VR simulation does not have sufficient empirical basis and has not been generally accepted for use in training and certification.
PURPOSE: To conduct a national needs assessment using a structured approach to identify and prioritize technical skills and procedures in otorhinolaryngology (ORL) for simulation-based training.
METHODS: The study was designed as a national Danish survey of key educational stakeholders in ORL. A Delphi methodology with three rounds was used: the first round constituted a brainstorming phase to identify relevant procedures; the second round was a survey of importance, frequency, number of physicians needed to train, and patient safety/discomfort of the procedures, and feasibility of simulation-based training; and a final third round for prioritization.
RESULTS: A total of 62 key opinion leaders were identified and 50 responded in the first round, constituting our panel. Fifty technical skills and procedures were identified in the brainstorming phase and were sent out for assessment, with responses from 56.5% of still eligible panellists. Thirty-six procedures were found important in ORL residency training by the panel. After final prioritization by the panel (response rate 43.4%), there was broad consensus (> 75%) on the need for simulation-based training of 13 technical skills and procedures, with the most highly ranking procedures being emergency cricothyroidotomy, flexible fibre pharyngo-laryngoscopy, and basic surgical skills.
CONCLUSIONS: As educational decisions are increasingly required to be evidence-based, this study represents a structured approach to identifying procedures for simulation-based training in ORL. This information can be valuable in the development and implementation of simulation-based training programmes in the ORL residency training curriculum.
OBJECTIVE: Virtual reality (VR) simulation training can improve temporal bone (TB) cadaver dissection skills and distributed, self-regulated practice is optimal for skills consolidation. Decentralized training (DT) at the trainees’ own department or home offers more convenient access compared with centralized VR simulation training where the simulators are localized at one facility. The effect of DT in TB surgical training is unknown. We investigated the effect of decentralized VR simulation training of TB surgery on subsequent cadaver dissection performance.
STUDY DESIGN: Prospective, controlled cohort study.
SETTING: Otorhinolaryngology (ORL) teaching hospitals and the Danish national TB course.
PARTICIPANTS: Thirty-eight ORL residents: 20 in the intervention cohort (decentralized training) and 18 in the control cohort (standard training during course).
INTERVENTION: Three months of access to decentralized VR simulation training at the local ORL department or the trainee’s home. A freeware VR simulator (the visible ear simulator [VES]) was used, supplemented by a range of learning supports for directed, self-regulated learning.
MAIN OUTCOME MEASURE: Mastoidectomy final-product scores from the VR simulations and cadaver dissection were rated using a modified Welling Scale by blinded expert raters.
RESULTS: Participants in the intervention cohort trained decentrally a median of 3.5 hours and performed significantly better than the control cohort during VR simulation (p < 0.01), which importantly also transferred to a 76% higher performance score during subsequent cadaver training (mean scores: 8.8 versus 5.0 points; p < 0.001).
CONCLUSIONS: Decentralized VR simulation training of mastoidectomy improves subsequent cadaver dissection performance and can potentially improve implementation of VR simulation surgical training.
PURPOSE: Virtual reality (VR) training of mastoidectomy is effective in surgical training-particularly if organized as distributed practice. However, centralization of practice facilities is a barrier to implementation of distributed simulation training. Decentralized training could be a potential solution. Here, we aim to assess the feasibility, use, and barriers to decentralized VR mastoidectomy training using a freeware, high-fidelity temporal bone simulator.
METHODS: In a prospective, mixed-methods study, 20 otorhinolaryngology residents were given three months of local access to a VR mastoidectomy simulator. Additionally, trainees were provided a range of learning supports for directed, self-regulated learning. Questionnaire data were collected and focus group interviews conducted. The interviews were analyzed using thematic analysis and compared with quantitative findings.
RESULTS: Participants trained 48.5 h combined and mainly towards the end of the trial. Most participants used between two and four different learning supports. Qualitative analysis revealed five main themes regarding implementation of decentralized simulation training: convenience, time for training, ease of use, evidence for training, and testing.
CONCLUSIONS: Decentralized VR training using a freeware, high-fidelity mastoidectomy simulator is feasible but did not lead to a high training volume or truly distributed practice. Evidence for training was found motivational. Access to training, educational designs, and the role of testing are important for participant motivation and require further evaluation.
BACKGROUND: Virtual reality simulators combined with head-mounted displays enable highly immersive virtual reality (VR) for surgical skills training, potentially bridging the gap between the simulation environment and real-life operating room conditions. However, the increased complexity of the learning situation in immersive VR could potentially induce high cognitive load thereby inhibiting performance and learning. This study aims to compare cognitive load and performance in immersive VR and conventional VR simulation training.
METHODS: A randomized controlled trial of residents (n = 31) performing laparoscopic salpingectomies with an ectopic pregnancy in either immersive VR or conventional VR simulation. Cognitive load was estimated by secondary-task reaction time at baseline, and during nonstressor and stressor phases of the procedure. Simulator metrics were used to evaluate performance.
RESULTS: Cognitive load was increased by 66% and 58% during immersive VR and conventional VR simulation, respectively (p < 0.001), compared to baseline. A light stressor induced a further increase in cognitive load by 15.2% and a severe stressor by 43.1% in the immersive VR group compared to 23% (severe stressor) in the conventional VR group. Immersive VR also caused a significantly worse performance on most simulator metrics.
CONCLUSION: Immersive VR simulation training induces a higher cognitive load and results in a poorer performance than conventional VR simulation training in laparoscopy. High extraneous load and element interactivity in the immersive VR are suggested as mechanisms explaining this finding. However, immersive VR offers some potential advantages over conventional VR such as more real-life conditions but we only recommend introducing immersive VR in surgical skills training after initial training in conventional VR.
BACKGROUND: The use of robotic surgery for minimally invasive procedures has increased considerably over the last decade. Robotic surgery has potential advantages compared to laparoscopic surgery but also requires new skills. Using virtual reality (VR) simulation to facilitate the acquisition of these new skills could potentially benefit training of robotic surgical skills and also be a crucial step in developing a robotic surgical training curriculum. The study’s objective was to establish validity evidence for a simulation-based test for procedural competency for the vaginal cuff closure procedure that can be used in a future simulation-based, mastery learning training curriculum.
METHODS: Eleven novice gynaecological surgeons without prior robotic experience and 11 experienced gynaecological robotic surgeons (> 30 robotic procedures) were recruited. After familiarization with the VR simulator, participants completed the module ‘Guided Vaginal Cuff Closure’ six times. Validity evidence was investigated for 18 preselected simulator metrics. The internal consistency was assessed using Cronbach’s alpha and a composite score was calculated based on metrics with significant discriminative ability between the two groups. Finally, a pass/fail standard was established using the contrasting groups’ method.
RESULTS: The experienced surgeons significantly outperformed the novice surgeons on 6 of the 18 metrics. The internal consistency was 0.58 (Cronbach’s alpha). The experienced surgeons’ mean composite score for all six repetitions were significantly better than the novice surgeons’ (76.1 vs. 63.0, respectively, p < 0.001). A pass/fail standard of 75/100 was established. Four novice surgeons passed this standard (false positives) and three experienced surgeons failed (false negatives).
CONCLUSION: Our study has gathered validity evidence for a simulation-based test for procedural robotic surgical competency in the vaginal cuff closure procedure and established a credible pass/fail standard for future proficiency-based training.
BACKGROUND: Complex tasks such as surgical procedures can induce excessive cognitive load (CL), which can have a negative effect on learning, especially for novices.
AIM: To investigate if repeated and distributed virtual reality (VR) simulation practice induces a lower CL and higher performance in subsequent cadaveric dissection training.
METHODS: In a prospective, controlled cohort study, 37 residents in otorhinolaryngology received VR simulation training either as additional distributed practice prior to course participation (intervention) (9 participants) or as standard practice during the course (control) (28 participants). Cognitive load was estimated as the relative change in secondary-task reaction time during VR simulation and cadaveric procedures.
RESULTS: Structured distributed VR simulation practice resulted in lower mean reaction times (32% vs. 47% for the intervention and control group, respectively, p < 0.01) as well as a superior final-product performance during subsequent cadaveric dissection training.
CONCLUSIONS: Repeated and distributed VR simulation causes a lower CL to be induced when the learning situation is increased in complexity. A suggested mechanism is the formation of mental schemas and reduction of the intrinsic CL. This has potential implications for surgical skills training and suggests that structured, distributed training be systematically implemented in surgical training curricula.
OBJECTIVE: To investigate the effect on final-product performance of a distributed, virtual reality (VR) simulation training program on cadaveric dissection performance and learning curves compared with standard VR simulation training during a temporal bone course.
STUDY DESIGN: Educational interventional cohort study.
SETTING: The national Danish temporal bone courses of 2016 and 2017.
SUBJECTS: Postgraduate year 2 to 5 residents in otorhinolaryngology.
INTERVENTION: Nine participants volunteered for additional VR simulation training (intervention) before the temporal bone course, with training blocks distributed (i.e., separated). The remaining 28 participants received standard VR simulation training during the temporal bone course (control).
MAIN OUTCOME MEASURE: VR simulation and cadaveric dissection final-product performances were analyzed by blinded raters using a 26-item modified Welling Scale.
RESULTS: Distributed VR simulation training before the temporal bone course (intervention) significantly increased dissection final-product performance by 25% compared with standard VR simulation training during the course (control) (mean scores 12.8 points versus 10.3 points, p < 0.01). Distributed and repeated VR simulation practice markedly decreased drilling time. Guidance by the simulator-integrated tutor-function significantly increased final-product performance by 2.3 points compared with nontutored procedures but at the cost of increased drilling time.
CONCLUSION: Skills acquired in a VR simulation environment translate to cadaveric dissection skills and repeated and distributed VR simulation can be used to further increase performance compared with standard VR simulation training during a temporal bone course. Further dissemination of inexpensive VR simulators would allow all future temporal bone course participants to train locally before attending future centralized courses.
PURPOSE: In otorhinolaryngology training, introduction to temporal bone surgery through hands-on practice on cadaveric human temporal bones is the gold-standard training method before commencing supervised surgery. During the recent decades, the availability of such specimens and the necessary laboratory facilities for training seems to be decreasing. Alternatives to traditional training can consist of drilling artificial models made of plaster or plastic but also virtual reality (VR) simulation. Nevertheless, the integration and availability of these alternatives into specialist training programs remain unknown.
METHODS: We conducted a questionnaire study mapping current status on temporal bone training and included responses from 113 departments from 23 countries throughout Europe.
RESULTS: In general, temporal bone training during residency in ORL is organized as in-house training, or as participation in national or international temporal bone courses or some combination hereof. There are considerable differences in the availability of training facilities for temporal bone surgery and the number of drillings each ORL trainee can perform. Cadaveric dissection is still the most commonly used training modality.
CONCLUSIONS: VR simulation and artificial models are reported to be used at many leading training departments already. Decreasing availability of cadavers, lower costs of VR simulation and artificial models, in addition to established evidence for a positive effect on the trainees’ competency, were reported as the main reasons. Most remaining departments expect to implement VR simulation and artificial models for temporal bone training into their residency programs in the near future.
Response to: Escada PA. Commentary on “European status on temporal bone training: a questionnaire study”. Eur Arch Otorhinolaryngol. 2018;275(5):1349-1350. doi: 10.1007/s00405-018-4916-5
This article presents a summary of the current simulation training for otologic skills. There is a wide variety of educational approaches, assessment tools, and simulators in use, including simple low-cost task trainers to complex computer-based virtual reality systems. A systematic approach to otologic skills training using adult learning theory concepts, such as repeated and distributed practice, self-directed learning, and mastery learning, is necessary for these educational interventions to be effective. Future directions include development of measures of performance to assess efficacy of simulation training interventions and, for complex procedures, improvement in fidelity based on educational goals.
OBJECTIVES/HYPOTHESIS: To explore why novices’ performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved.
STUDY DESIGN: Prospective study.
METHODS: Data on the performances of 40 novices who had completed repeated, directed, self-regulated VR simulation training of mastoidectomy were included. Data were analyzed to identify key areas of difficulty as well as the procedures terminated without using all the time allowed.
RESULTS: Novices had difficulty in avoiding drilling holes in the outer anatomical boundaries of the mastoidectomy and frequently made injuries to vital structures such as the lateral semicircular canal, the ossicles, and the facial nerve. The simulator-integrated tutor function improved performance on many of these items, but overreliance on tutoring was observed. Novices also demonstrated poor self-assessment skills and often did not make use of the allowed time, lacking knowledge on when to stop or how to excel.
CONCLUSION: Directed, self-regulated VR simulation training of mastoidectomy needs a strong instructional design with specific process goals to support deliberate practice because cognitive effort is needed for novices to improve beyond an initial plateau.
Virtual reality (VR) simulation-based training is increasingly used in surgical technical skills training including in temporal bone surgery. The potential of VR simulation in enabling high-quality surgical training is great and VR simulation allows high-stakes and complex procedures such as mastoidectomy to be trained repeatedly, independent of patients and surgical tutors, outside traditional learning environments such as the OR or the temporal bone lab, and with fewer of the constraints of traditional training. This thesis aims to increase the evidence-base of VR simulation training of mastoidectomy and, by studying the final-product performances of novices, investigates the transfer of skills to the current gold-standard training modality of cadaveric dissection, the effect of different practice conditions and simulator-integrated tutoring on performance and retention of skills, and the role of directed, self-regulated learning. Technical skills in mastoidectomy were transferable from the VR simulation environment to cadaveric dissection with significant improvement in performance after directed, self-regulated training in the VR temporal bone simulator. Distributed practice led to a better learning outcome and more consolidated skills than massed practice and also resulted in a more consistent performance after three months of non-practice. Simulator-integrated tutoring accelerated the initial learning curve but also caused over-reliance on tutoring, which resulted in a drop in performance when the simulator-integrated tutor-function was discontinued. The learning curves were highly individual but often plateaued early and at an inadequate level, which related to issues concerning both the procedure and the VR simulator, over-reliance on the tutor function and poor self-assessment skills. Future simulator-integrated automated assessment could potentially resolve some of these issues and provide trainees with both feedback during the procedure and immediate assessment following each procedure. Standard setting by establishing a proficiency level that can be used for mastery learning with deliberate practice could also further sophisticate directed, self-regulated learning in VR simulation-based training. VR simulation-based training should be embedded in a systematic and competency-based training curriculum for high-quality surgical skills training, ultimately leading to improved safety and patient care.
BACKGROUND: Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy.
METHODS: Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances.
RESULTS: Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005).
CONCLUSIONS: Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.
IMPORTANCE: The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training.
OBJECTIVES: To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants’ cognitive load during retention procedures.
DESIGN, SETTING, AND PARTICIPANTS: A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice.
INTERVENTIONS: Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed).
MAIN OUTCOMES AND MEASURES: Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task.
RESULTS: Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean pretraining relative reaction time, 1.42 [95% CI, 1.37-1.47]; mean end of training relative reaction time, 1.24 [95% CI, 1.16-1.32]; and mean retention relative reaction time, 1.36 [95% CI, 1.30-1.42]; massed practice group: mean pretraining relative reaction time, 1.34 [95% CI, 1.28-1.40]; mean end of training relative reaction time, 1.31 [95% CI, 1.21-1.42]; and mean retention relative reaction time, 1.39 [95% CI, 1.31-1.46]) indicated that cognitive load during the virtual procedures had returned to the pretraining level.
CONCLUSIONS AND RELEVANCE: Mastoidectomy skills acquired under time-distributed practice conditions were retained better than skills acquired under massed practice conditions. Complex psychomotor skills should be regularly reinforced to consolidate both motor and cognitive aspects. Virtual reality simulation training provides the opportunity for such repeated training and should be integrated into training curricula.
OBJECTIVE: The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy.
DESIGN: A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities.
SETTING: The national Danish temporal bone course.
PARTICIPANTS: A total of 40 novice otorhinolaryngology residents.
RESULTS: Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001).
CONCLUSIONS: VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation.
BACKGROUND: Temporal bone surgery requires integration of complex knowledge and technical skills. This can be difficult to accomplish with traditional cadaveric dissection training, which is often organized as single-instance participation in a temporal bone course. Simulator-integrated tutoring in virtual reality (VR) surgical simulators can visually guide the procedure and facilitate self-directed surgical skills acquisition. This study aims to explore the performances of novice otorhinolaryngology residents in a freeware VR simulator and in cadaveric dissection training of mastoidectomy.
METHODS: Thirty-four novice otorhinolaryngology residents performed a single and self-directed mastoidectomy procedure in a freeware VR temporal bone simulator before performing a similar procedure on a cadaveric temporal bone. VR simulation and cadaveric dissection performances were assessed by two blinded expert raters using final product analysis.
RESULTS: Participants achieved a higher mean final product score in VR simulation compared with cadaveric dissection (14.9 and 13.2, respectively; P = 0.02). Significantly more of the participants had their best performance in VR simulation (P = 0.04). No differences in computer experience and interest were found between the group that performed better in VR simulation and the group that performed better in cadaveric dissection.
CONCLUSIONS: Novice performance in a freeware VR temporal bone simulator was significantly better than in cadaveric dissection. The simulator-integrated tutor function and reduced complexity of the procedure in VR simulation could be possible explanations for this finding. VR simulation training could be used in the initial training of novices, reserving dissection training for more advanced training after basic competencies have been acquired with VR simulation.
OBJECTIVES/HYPOTHESIS: The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training.
STUDY DESIGN: Prospective trial with blinding.
METHODS: A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures.
RESULTS: Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator.
CONCLUSIONS: A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved.
A variety of structured assessment tools for use in surgical training have been reported, but extant assessment tools often employ paper-based rating forms. Digital assessment forms for evaluating surgical skills could potentially offer advantages over paper-based forms, especially in complex assessment situations. In this paper, we report on the development of cross-platform digital assessment forms for use with multiple raters in order to facilitate the automatic processing of surgical skills assessments that include structured ratings. The FileMaker 13 platform was used to create a database containing the digital assessment forms, because this software has cross-platform functionality on both desktop computers and handheld devices. The database is hosted online, and the rating forms can therefore also be accessed through most modern web browsers. Cross-platform digital assessment forms were developed for the rating of surgical skills. The database platform used in this study was reasonably priced, intuitive for the user, and flexible. The forms have been provided online as free downloads that may serve as the basis for further development or as inspiration for future efforts. In conclusion, digital assessment forms can be used for the structured rating of surgical skills and have the potential to be especially useful in complex assessment situations with multiple raters, repeated assessments in various times and locations, and situations requiring substantial subsequent data processing or complex score calculations.
The Visible Ear Simulator (VES) is a freeware temporal bone surgical simulator utilizing a high-fidelity haptic and graphical voxel model compiled from segmented digital images of fresh frozen sections. A haptic device provides the 3-dimensional handling and drilling with force-feedback in real time. In a multilingual user interface the integrated tutor function provides stepwise instructions during drilling through an intuitive, volumetric approach. A censor function draws on metrics derived from the simulator to provide instant and summary feedback for the user. The VES can be downloaded from http://ves.cg.alexandra.dk.
Letter on “A Structured Facial Feminization Fresh Tissue Surgical Simulation Laboratory Improves Trainee Confidence and Knowledge”