Publication Types:

Sort by year:

Ultra-high-fidelity virtual reality mastoidectomy simulation training—a randomized, controlled trial.

ArticleImmersive simulationMastoidectomyTemporal bone surgeryVR simulation
Frithioff A, Frendø M, Sørensen MS, Andersen SA.
Eur Arch Otorhinolaryngol. 2020 May;277(5):1335-1341.
Publication year: 2020

PURPOSE: Ultra-high-fidelity (UHF) graphics in virtual reality (VR) simulation might improve surgical skill acquisition in temporal bone training. This study aims to compare UHF VR simulation training with conventional, screen-based VR simulation training (cVR) with respect to performance and cognitive load (CL).

METHODS: In a randomized trial with a cross-over design, 24 students completed a total of four mastoidectomies in a VR temporal bone surgical simulator: two performances under UHF conditions using a digital microscope and two performances under conventional conditions using screen-based VR simulation. Performances were assessed by two blinded raters using an established assessment tool. In addition, CL was estimated as the relative change in secondary-task reaction time during simulation when compared with individual baseline measurements. Data were analyzed using linear mixed model analysis for repeated measurements.

RESULTS: The mean final-product performance score was significantly lower in UHF VR simulation compared to cVR simulation [mean difference 1.0 points out of 17 points, 95% CI (0.2–1.7), p = 0.02]. The most important factor for performance during UHF simulation was the ability to achieve stereovision (mean difference = 3.4 points, p < 0.001). Under the UHF VR condition, CL was significantly higher than during cVR (28% vs. 18%, respectively, p < 0.001).

CONCLUSION: UHF graphics in VR simulation training reduced performance and induced a higher CL in novices than conventional, screen-based VR simulation training. Consequently, UHF VR simulation training should be preceded by cVR training and might be better suited for the training of intermediates or experienced surgeons.

Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial

ArticleCognitive loadDirected self-regulated learningImmersive simulationInstructional designSurgical trainingVR simulation
Frederiksen JG, Sørensen SM, Konge L, Svendsen MB, Nobel-Jørgensen M, Bjerrum F, Andersen SA.
Surg Endosc. 2020;34(3):1244–1252.
Publication year: 2019

BACKGROUND: Virtual reality simulators combined with head-mounted displays enable highly immersive virtual reality (VR) for surgical skills training, potentially bridging the gap between the simulation environment and real-life operating room conditions. However, the increased complexity of the learning situation in immersive VR could potentially induce high cognitive load thereby inhibiting performance and learning. This study aims to compare cognitive load and performance in immersive VR and conventional VR simulation training.

METHODS: A randomized controlled trial of residents (n = 31) performing laparoscopic salpingectomies with an ectopic pregnancy in either immersive VR or conventional VR simulation. Cognitive load was estimated by secondary-task reaction time at baseline, and during nonstressor and stressor phases of the procedure. Simulator metrics were used to evaluate performance.

RESULTS: Cognitive load was increased by 66% and 58% during immersive VR and conventional VR simulation, respectively (p < 0.001), compared to baseline. A light stressor induced a further increase in cognitive load by 15.2% and a severe stressor by 43.1% in the immersive VR group compared to 23% (severe stressor) in the conventional VR group. Immersive VR also caused a significantly worse performance on most simulator metrics.

CONCLUSION: Immersive VR simulation training induces a higher cognitive load and results in a poorer performance than conventional VR simulation training in laparoscopy. High extraneous load and element interactivity in the immersive VR are suggested as mechanisms explaining this finding. However, immersive VR offers some potential advantages over conventional VR such as more real-life conditions but we only recommend introducing immersive VR in surgical skills training after initial training in conventional VR.