Publication Types:

Sort by year:

Mastoidectomy training—is anatomical variation needed? A randomized, controlled trial on performance and skills transfer from Virtual Reality to a 3D-printed model

Directed self-regulated learningInstructional designMastoidectomyTemporal bone surgeryVR simulation
Arnesen KA, Frithioff A, Sørensen MS, Andersen SA, Frendø M.
Otol Neurotol. 2022; May 11 [Accepted].
Publication year: 2022

Effect of 3D-Printed Models on Cadaveric Dissection in Temporal Bone Training

3D-printingDirected self-regulated learningMastoidectomyTemporal bone surgery
Frithioff A, Frendø M, Weiss K, Foghsgaard S, Pedersen DB, Sørensen MS, Andersen SAW.
OTO Open. 2021 Dec 13;5(4):2473974X211065012.
Publication year: 2022

Objective: Mastoidectomy is a cornerstone in the surgical management of middle and inner ear diseases. Unfortunately, training is challenged by insufficient access to human cadavers. Three-dimensional (3D) printing of temporal bones could alleviate this problem, but evidence on their educational effectiveness is lacking. It is largely unknown whether training on 3D-printed temporal bones improves mastoidectomy performance, including on cadavers, and how this training compares with virtual reality (VR) simulation. To address this knowledge gap, this study investigated whether training on 3D-printed temporal bones improves cadaveric dissection performance, and it compared this training with the already-established VR simulation.

Study design: Prospective cohort study of an educational intervention.

Setting: Tertiary university hospital, cadaver dissection laboratory, and simulation center in Copenhagen, Denmark.

Methods: Eighteen otorhinolaryngology residents (intervention) attending the national temporal bone dissection course received 3 hours of mastoidectomy training on 3D-printed temporal bones. Posttraining cadaver mastoidectomy performances were rated by 3 experts using a validated assessment tool and compared with those of 66 previous course participants (control) who had received time-equivalent VR training prior to dissection.

Results: The intervention cohort outperformed the controls during cadaver dissection by 29% (P < .001); their performances were largely similar across training modalities but remained at a modest level (~50% of the maximum score).

Conclusion: Mastoidectomy skills improved from training on 3D-printed temporal bone and seemingly more so than on time-equivalent VR simulation. Importantly, these skills transferred to cadaveric dissection. Training on 3D-printed temporal bones can effectively supplement cadaver training when learning mastoidectomy.

Keywords: 3D printing; additive manufacturing; education; mastoidectomy; neurotology; otology; rapid prototyping; surgical simulation; temporal bone; training.

Automated calculation of cochlear implant electrode insertion parameters in clinical cone-beam CT

MastoidectomyOtologyPatient-specificTemporal bone surgeryVR simulation
Andersen SA, Keith JP, Hittle B, Riggs WJ, Adunka O, Wiet GJ, Powell KA
Otol Neurotol. 2022 Feb 1;43(2):199-205.
Publication year: 2022

Hypothesis: Automated processing of postoperative clinical cone-beam CT (CBCT) of cochlear implant (CI) patients can be used to accurately determine electrode contacts and integrated with an atlas-based mapping of cochlear microstructures to calculate modiolar distance, angular insertion distance, and scalar location of electrode contacts.

Background: Hearing outcomes after CI surgery are dependent on electrode placement. CBCT is increasingly used for in-office temporal bone imaging and might be routinely used for pre- and post-surgical evaluation.

Methods: Thirty-six matched pairs of pre- and postimplant CBCT scans were obtained. These were registered with an atlas to model cochlear microstructures in each dataset. Electrode contact center points were automatically determined using thresholding and electrode insertion parameters were calculated. Automated localization and calculation were compared with manual segmentation of contact center points as well as manufacturer specifications.

Results: Automated electrode contact detection aligned with manufacturer specifications of spacing and our algorithms worked for both distantly- and closely spaced arrays. The average difference between the manual and the automated selection was 0.15 mm, corresponding to a 1.875 voxel difference in each plane at the scan resolution. For each case, we determined modiolar distance, angular insertion depth, and scalar location. These calculations also resulted in similar insertion values using manual and automated contact points as well as aligning with electrode properties.

Conclusion: Automated processing of implanted high-resolution CBCT images can provide the clinician with key information on electrode placement. This is one step toward routine use of clinical CBCT after CI surgery to inform and guide postoperative treatment.

Am I doing this right? Structured self-assessment during simulation training of mastoidectomy improves cadaver dissection performance: a prospective educational study

AssessmentDirected self-regulated learningInstructional designLearning toolsMastoidectomyTemporal bone surgeryVR simulation
Andersen SA, Frithioff A, von Buchwald JH, Sørensen MS, Frendø M.
Eur Arch Otorhinolaryngol. 2022 May 16 [Accepted].
Publication year: 2022

Purpose: Temporal bone surgery requires excellent surgical skills and simulation-based training can aid novices’ skills acquisition. However, simulation-based training is challenged by early stagnation of the learning after relatively few performances. Structured self-assessment during practice might enhance learning by inducing reflection and engagement in the learning task. In this study, structured self-assessment was introduced during virtual reality (VR) simulation of mastoidectomy to investigate the effects on subsequent performance during cadaveric dissection.

Methods: This was a prospective educational study with comparison with historical controls (reference cohort). At a temporal bone dissection course, eighteen participants performed structured self-assessment during three hours of VR simulation training of mastoidectomy before proceeding to cadaver dissection/surgery (intervention cohort). At a previous course, eighteen participants received similar VR simulation training but without the structured self-assessment (reference cohort). Final products from VR simulation and cadaveric dissection were video-recorded and assessed by two blinded raters using a 19-point modified Welling Scale.

Results: The intervention cohort completed fewer procedures (average 4.2) during VR simulation training than the reference cohort (average 5.7). Nevertheless, the intervention cohort achieved a significantly higher average dissection score both in VR simulation (11.1 points, 95% CI [10.6–11.5]) and subsequent cadaveric dissection (11.8 points, 95% CI [10.7–12.8]) compared with the reference cohort who scored 9.1 points (95% CI [8.7–9.5]) during VR simulation and 5.8 points (95% CI [4.8–6.8]) during cadaveric dissection.

Conclusion: Structured self-assessment is a valuable learning support during self-directed VR simulation training of mastoidectomy and the positive effect on performance transfers to subsequent cadaveric dissection performance.

Segmentation of temporal bone anatomy for patient-specific virtual reality simulation

ArticleMastoidectomyPatient-specificTemporal bone surgeryVR simulation
Andersen SA, Bergman M, Keith JP, Powell KA, Hittle B, Malhotra P, Wiet GJ
Ann Otol Rhinol Laryngol. 2021 Jul;130(7):724-730.
Publication year: 2021

Objectives: Virtual reality (VR) simulation for patient-specific pre-surgical planning and rehearsal requires accurate segmentation of key surgical landmark structures such as the facial nerve, ossicles, and cochlea. The aim of this study was to explore different approaches to segmentation of temporal bone surgical anatomy for patient-specific VR simulation.

Methods: De-identified, clinical computed tomography imaging of 9 pediatric patients aged 3 months to 12 years were obtained retrospectively. The patients represented normal anatomy and key structures were manually segmented using open source software. The OTOPLAN (CAScination AG, Bern, Switzerland) otological planning software was used for guided segmentation. An atlas-based algorithm was used for computerized, automated segmentation. Experience with the different approaches as well as time and resulting models were compared.

Results: Manual segmentation was time consuming but also the most flexible. The OTOPLAN software is not designed specifically for our purpose and therefore the number of structures that can be segmented is limited, there was some user-to-user variation as well as volume differences compared with manual segmentation. The atlas-based automated segmentation potentially allows a full range of structures to be segmented and produces segmentations comparable to those of manual segmentation with a processing time that is acceptable because of the minimal user interaction.

Conclusion: Segmentation is fundamental for patient-specific VR simulation for pre-surgical planning and rehearsal in temporal bone surgery. The automated segmentation algorithm currently offers the most flexible and feasible approach and should be implemented. Further research is needed in relation to cases of abnormal anatomy.

Ultra-high-fidelity virtual reality mastoidectomy simulation training—a randomized, controlled trial.

ArticleImmersive simulationMastoidectomyTemporal bone surgeryVR simulation
Frithioff A, Frendø M, Sørensen MS, Andersen SA.
Eur Arch Otorhinolaryngol. 2020 May;277(5):1335-1341.
Publication year: 2020

PURPOSE: Ultra-high-fidelity (UHF) graphics in virtual reality (VR) simulation might improve surgical skill acquisition in temporal bone training. This study aims to compare UHF VR simulation training with conventional, screen-based VR simulation training (cVR) with respect to performance and cognitive load (CL).

METHODS: In a randomized trial with a cross-over design, 24 students completed a total of four mastoidectomies in a VR temporal bone surgical simulator: two performances under UHF conditions using a digital microscope and two performances under conventional conditions using screen-based VR simulation. Performances were assessed by two blinded raters using an established assessment tool. In addition, CL was estimated as the relative change in secondary-task reaction time during simulation when compared with individual baseline measurements. Data were analyzed using linear mixed model analysis for repeated measurements.

RESULTS: The mean final-product performance score was significantly lower in UHF VR simulation compared to cVR simulation [mean difference 1.0 points out of 17 points, 95% CI (0.2–1.7), p = 0.02]. The most important factor for performance during UHF simulation was the ability to achieve stereovision (mean difference = 3.4 points, p < 0.001). Under the UHF VR condition, CL was significantly higher than during cVR (28% vs. 18%, respectively, p < 0.001).

CONCLUSION: UHF graphics in VR simulation training reduced performance and induced a higher CL in novices than conventional, screen-based VR simulation training. Consequently, UHF VR simulation training should be preceded by cVR training and might be better suited for the training of intermediates or experienced surgeons.

Understanding the effects of structured self-assessment in directed, self-regulated simulation-based training of mastoidectomy: a mixed methods study

ArticleCognitive loadInstructional designLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Frendø M, Guldager M, Sørensen MS.
J Otol. 2020 Dec;15(4):117-123.
Publication year: 2019

OBJECTIVE: Self-directed training represents a challenge in simulation-based training as low cognitive effort can occur when learners overrate their own level of performance. This study aims to explore the mechanisms underlying the positive effects of a structured self-assessment intervention during simulation-based training of mastoidectomy.

METHODS: A prospective, educational cohort study of a novice training program consisting of directed, self-regulated learning with distributed practice (5×3 procedures) in a virtual reality temporal bone simulator. The intervention consisted of structured self-assessment after each procedure using a rating form supported by small videos. Semi-structured telephone interviews upon completion of training were conducted with 13 out of 15 participants. Interviews were analysed using directed content analysis and triangulated with quantitative data on secondary task reaction time for cognitive load estimation and participants’ self-assessment scores.

RESULTS: Six major themes were identified in the interviews: goal-directed behaviour, use of learning supports for scaffolding of the training, cognitive engagement, motivation from self-assessment, self-assessment bias, and feedback on self-assessment (validation). Participants seemed to self-regulate their learning by forming individual sub-goals and strategies within the overall goal of the procedure. They scaffolded their learning through the available learning supports. Finally, structured self-assessment was reported to increase the participants’ cognitive engagement, which was further supported by a quantitative increase in cognitive load.

CONCLUSIONS: Structured self-assessment in simulation-based surgical training of mastoidectomy seems to promote cognitive engagement and motivation in the learning task and to facilitate self-regulated learning.

Standard setting of competency in mastoidectomy for the Cross-Institutional Mastoidectomy Assessment Tool

ArticleAssessmentMastoidectomyTemporal bone surgery
Kerwin T, Wiet G, Hittle B, Stredney D, Moberly A, De Boeck P, Andersen SA.
Ann Otol Rhinol Laryngol. 2020 Apr;129(4):340–346.
Publication year: 2019

OBJECTIVE: Competency-based surgical training involves progressive autonomy given to the trainee. This requires systematic and evidence-based assessment with well-defined standards of proficiency. The objective of this study is to develop standards for the cross-institutional mastoidectomy assessment tool to inform decisions regarding whether a resident demonstrates sufficient skill to perform a mastoidectomy with or without supervision.

METHODS: A panel of fellowship-trained content experts in mastoidectomy was surveyed in relation to the 16 items of the assessment tool to determine the skills needed for supervised and unsupervised surgery. We examined the consensus score to investigate the degree of agreement among respondents for each survey item as well as additional analyses to determine whether the reported skill level required for each survey item was significantly different for the supervised versus unsupervised level.

RESULTS: Ten panelists representing different US training programs responded. There was considerable consensus on cut-off scores for each item and trainee level between panelists, with moderate (0.62) to very high (0.95) consensus scores depending on assessment item. Further analyses demonstrated that the difference between supervised and unsupervised skill levels was significantly meaningful for all items. Finally, minimum-passing scores for each item was established.

CONCLUSION: We defined performance standards for the cross-institutional mastoidectomy assessment tool using the Angoff method. These cut-off scores that can be used to determine when trainees can progress from performance under supervision to performance without supervision. This can be used to guide training in a competency-based training curriculum.

Performance metrics in mastoidectomy training: A systematic review

ArticleAssessmentMastoidectomySurgical training
Al-Shahrestani F, Sørensen MS, Andersen SA
Eur Arch Otorhinolaryngol. 2019;276(3):657-664.
Publication year: 2019

OBJECTIVE: To investigate validity evidence, and strengths and limitations of performance metrics in mastoidectomy training.

METHODS: A systematic review following the PRISMA guidelines. Studies reporting performance metrics in mastoidectomy/temporal bone surgery were included. Data on design, outcomes, and results were extracted by two reviewers. Validity evidence according to Messick’s framework and level of evidence were assessed.

RESULTS: The search yielded a total of 1085 studies from the years 1947-2018 and 35 studies were included for full data extraction after abstract and full-text screening. 33 different metrics on mastoidectomy performance were identified and ranked according to the number of reports. Most of the 33 metrics identified had some amount of validity evidence. The metrics with most validity evidence were related to drilling time, volume drilled per time, force applied near vital structures, and volume removed.

CONCLUSIONS: This review provides an overview of current metrics of mastoidectomy performance, their validity, strengths and limitations, and identifies the gap in validity evidence of some metrics. Evidence-based metrics can be used for performance assessment in temporal bone surgery and for providing integrated and automated feedback in virtual reality simulation training. The use of such metrics in simulation-based mastoidectomy training can potentially address some of the limitations in current temporal bone skill assessment and ease assessment in repeated practice. However, at present, an automated feedback based on metrics in VR simulation does not have sufficient empirical basis and has not been generally accepted for use in training and certification.

Expert sampling of VR simulator metrics for automated assessment of mastoidectomy performance.

ArticleAssessmentMastoidectomyOtologyTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Sørensen MS.
Laryngoscope. 2019;129(9):2170–2177
Publication year: 2019

OBJECTIVE: Often the assessment of mastoidectomy performance requires time-consuming manual rating. Virtual reality (VR) simulators offer potentially useful automated assessment and feedback but should be supported by validity evidence. We aimed to investigate simulator metrics for automated assessment based on the expert performance approach, comparison with an established assessment tool, and the consequences of standard setting.

METHODS: The performances of 11 experienced otosurgeons and 37 otorhinolaryngology residents. Participants performed three mastoidectomies in the Visible Ear Simulator. Nine residents contributed additional data on repeated practice in the simulator. One hundred and twenty-nine different performance metrics were collected by the simulator and final-product files were saved. These final products were analyzed using a modified Welling Scale by two blinded raters.

RESULTS: Seventeen metrics could discriminate between resident and experienced surgeons’ performances. These metrics mainly expressed various aspects of efficiency: Experts demonstrated more goal-directed behavior and less hesitancy, used less time, and selected large and sharp burrs more often. The combined metrics-based score (MBS) demonstrated significant discriminative ability between experienced surgeons and residents with a mean difference of 16.4% (95% confidence interval [12.6-20.2], P << 0.001). A pass/fail score of 83.6% was established. The MBS correlated poorly with the final-product score but excellently with the final-product score per time.

CONCLUSION: The MBS mainly reflected efficiency components of the mastoidectomy procedure, and although it could have some uses in self-directed training, it fails to measure and encourage safe routines. Supplemental approaches and feedback are therefore required in VR simulation training of mastoidectomy.

Decentralized Virtual Reality Training of Mastoidectomy Improves Cadaver Dissection Performance: A Prospective, Controlled Cohort Study

ArticleDirected self-regulated learningInstructional designMastoidectomySurgical trainingTemporal bone surgeryVR simulation
Frendø M, Cayé-Thomasen P, Konge L, Sørensen MS, Andersen SA.
Otol Neurotol. 2020 Apr;41(4):476–481.
Publication year: 2019

OBJECTIVE: Virtual reality (VR) simulation training can improve temporal bone (TB) cadaver dissection skills and distributed, self-regulated practice is optimal for skills consolidation. Decentralized training (DT) at the trainees’ own department or home offers more convenient access compared with centralized VR simulation training where the simulators are localized at one facility. The effect of DT in TB surgical training is unknown. We investigated the effect of decentralized VR simulation training of TB surgery on subsequent cadaver dissection performance.

STUDY DESIGN: Prospective, controlled cohort study.

SETTING: Otorhinolaryngology (ORL) teaching hospitals and the Danish national TB course.

PARTICIPANTS: Thirty-eight ORL residents: 20 in the intervention cohort (decentralized training) and 18 in the control cohort (standard training during course).

INTERVENTION: Three months of access to decentralized VR simulation training at the local ORL department or the trainee’s home. A freeware VR simulator (the visible ear simulator [VES]) was used, supplemented by a range of learning supports for directed, self-regulated learning.

MAIN OUTCOME MEASURE: Mastoidectomy final-product scores from the VR simulations and cadaver dissection were rated using a modified Welling Scale by blinded expert raters.

RESULTS: Participants in the intervention cohort trained decentrally a median of 3.5 hours and performed significantly better than the control cohort during VR simulation (p < 0.01), which importantly also transferred to a 76% higher performance score during subsequent cadaver training (mean scores: 8.8 versus 5.0 points; p < 0.001).

CONCLUSIONS: Decentralized VR simulation training of mastoidectomy improves subsequent cadaver dissection performance and can potentially improve implementation of VR simulation surgical training.

The Effect of a Distributed Virtual Reality Simulation Training Program on Dissection Mastoidectomy Performance

ArticleDirected self-regulated learningInstructional designMastoidectomySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Foghsgaard S, Cayé-Thomasen P, Sørensen MS.
Otol. Neurotol. 2018;39(10):1277–1284.
Publication year: 2018

OBJECTIVE: To investigate the effect on final-product performance of a distributed, virtual reality (VR) simulation training program on cadaveric dissection performance and learning curves compared with standard VR simulation training during a temporal bone course.

STUDY DESIGN: Educational interventional cohort study.

SETTING: The national Danish temporal bone courses of 2016 and 2017.

SUBJECTS: Postgraduate year 2 to 5 residents in otorhinolaryngology.

INTERVENTION: Nine participants volunteered for additional VR simulation training (intervention) before the temporal bone course, with training blocks distributed (i.e., separated). The remaining 28 participants received standard VR simulation training during the temporal bone course (control).

MAIN OUTCOME MEASURE: VR simulation and cadaveric dissection final-product performances were analyzed by blinded raters using a 26-item modified Welling Scale.

RESULTS: Distributed VR simulation training before the temporal bone course (intervention) significantly increased dissection final-product performance by 25% compared with standard VR simulation training during the course (control) (mean scores 12.8 points versus 10.3 points, p < 0.01). Distributed and repeated VR simulation practice markedly decreased drilling time. Guidance by the simulator-integrated tutor-function significantly increased final-product performance by 2.3 points compared with nontutored procedures but at the cost of increased drilling time.

CONCLUSION: Skills acquired in a VR simulation environment translate to cadaveric dissection skills and repeated and distributed VR simulation can be used to further increase performance compared with standard VR simulation training during a temporal bone course. Further dissemination of inexpensive VR simulators would allow all future temporal bone course participants to train locally before attending future centralized courses.

Mapping the plateau of novices in virtual reality simulation training of mastoidectomy

ArticleDirected self-regulated learningLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Konge L, Mikkelsen PT, Cayé-Thomasen P, Sørensen MS.
Laryngoscope. 2017;127(4):907–914.
Publication year: 2017

OBJECTIVES/HYPOTHESIS: To explore why novices’ performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved.

STUDY DESIGN: Prospective study.

METHODS: Data on the performances of 40 novices who had completed repeated, directed, self-regulated VR simulation training of mastoidectomy were included. Data were analyzed to identify key areas of difficulty as well as the procedures terminated without using all the time allowed.

RESULTS: Novices had difficulty in avoiding drilling holes in the outer anatomical boundaries of the mastoidectomy and frequently made injuries to vital structures such as the lateral semicircular canal, the ossicles, and the facial nerve. The simulator-integrated tutor function improved performance on many of these items, but overreliance on tutoring was observed. Novices also demonstrated poor self-assessment skills and often did not make use of the allowed time, lacking knowledge on when to stop or how to excel.

CONCLUSION: Directed, self-regulated VR simulation training of mastoidectomy needs a strong instructional design with specific process goals to support deliberate practice because cognitive effort is needed for novices to improve beyond an initial plateau.

Virtual reality simulation training of mastoidectomy - studies on novice performance

Virtual reality (VR) simulation-based training is increasingly used in surgical technical skills training including in temporal bone surgery. The potential of VR simulation in enabling high-quality surgical training is great and VR simulation allows high-stakes and complex procedures such as mastoidectomy to be trained repeatedly, independent of patients and surgical tutors, outside traditional learning environments such as the OR or the temporal bone lab, and with fewer of the constraints of traditional training. This thesis aims to increase the evidence-base of VR simulation training of mastoidectomy and, by studying the final-product performances of novices, investigates the transfer of skills to the current gold-standard training modality of cadaveric dissection, the effect of different practice conditions and simulator-integrated tutoring on performance and retention of skills, and the role of directed, self-regulated learning. Technical skills in mastoidectomy were transferable from the VR simulation environment to cadaveric dissection with significant improvement in performance after directed, self-regulated training in the VR temporal bone simulator. Distributed practice led to a better learning outcome and more consolidated skills than massed practice and also resulted in a more consistent performance after three months of non-practice. Simulator-integrated tutoring accelerated the initial learning curve but also caused over-reliance on tutoring, which resulted in a drop in performance when the simulator-integrated tutor-function was discontinued. The learning curves were highly individual but often plateaued early and at an inadequate level, which related to issues concerning both the procedure and the VR simulator, over-reliance on the tutor function and poor self-assessment skills. Future simulator-integrated automated assessment could potentially resolve some of these issues and provide trainees with both feedback during the procedure and immediate assessment following each procedure. Standard setting by establishing a proficiency level that can be used for mastery learning with deliberate practice could also further sophisticate directed, self-regulated learning in VR simulation-based training. VR simulation-based training should be embedded in a systematic and competency-based training curriculum for high-quality surgical skills training, ultimately leading to improved safety and patient care.

The effect of self-directed virtual reality simulation on dissection training performance in mastoidectomy

ArticleDirected self-regulated learningInstructional designMastoidectomyOtologyTemporal bone surgeryVR simulation
Andersen SA, Foghsgaard S, Konge L, Cayé-Thomasen P, Sørensen MS.
Laryngoscope. 2016;126(8):1883–1888.
Publication year: 2016

OBJECTIVES/HYPOTHESIS: To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting.

STUDY DESIGN: Prospective study.

METHODS: Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters.

RESULTS: The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P < 0.0001). A single dissection mastoidectomy did not increase VR simulation performance (P = 0.22).

CONCLUSIONS: Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment.


The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

ArticleCognitive loadDirected self-regulated learningInstructional designLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Konge L, Cayé-Thomasen P, Sørensen MS.
Adv Simul (Lond). 2016;1: 20.
Publication year: 2016

BACKGROUND: Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy.

METHODS: Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances.

RESULTS: Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005).

CONCLUSIONS: Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.

Retention of Mastoidectomy Skills After Virtual Reality Simulation Training

ArticleDirected self-regulated learningLearning supportsMastoidectomyOtologySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Konge L, Cayé-Thomasen P, Sørensen MS.
JAMA Otolaryngol Head Neck Surg. 2016;142(7):635–640.
Publication year: 2016

IMPORTANCE: The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training.

OBJECTIVES: To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants’ cognitive load during retention procedures.

DESIGN, SETTING, AND PARTICIPANTS: A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice.

INTERVENTIONS: Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed).

MAIN OUTCOMES AND MEASURES: Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task.

RESULTS: Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean pretraining relative reaction time, 1.42 [95% CI, 1.37-1.47]; mean end of training relative reaction time, 1.24 [95% CI, 1.16-1.32]; and mean retention relative reaction time, 1.36 [95% CI, 1.30-1.42]; massed practice group: mean pretraining relative reaction time, 1.34 [95% CI, 1.28-1.40]; mean end of training relative reaction time, 1.31 [95% CI, 1.21-1.42]; and mean retention relative reaction time, 1.39 [95% CI, 1.31-1.46]) indicated that cognitive load during the virtual procedures had returned to the pretraining level.

CONCLUSIONS AND RELEVANCE: Mastoidectomy skills acquired under time-distributed practice conditions were retained better than skills acquired under massed practice conditions. Complex psychomotor skills should be regularly reinforced to consolidate both motor and cognitive aspects. Virtual reality simulation training provides the opportunity for such repeated training and should be integrated into training curricula.

Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation

ArticleCognitive loadInstructional designMastoidectomyTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Konge L, Cayé-Thomasen P, Sørensen MS.
Laryngoscope. 2016;126(2):74–79.
Publication year: 2016

OBJECTIVES/HYPOTHESIS: Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation.

STUDY DESIGN: Prospective trial.

METHODS: Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements.

RESULTS: The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL.

CONCLUSION: Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses.

Peak and ceiling effects in final-product analysis of mastoidectomy performance

ArticleAssessmentMastoidectomyTemporal bone surgeryVR simulation
West N, Konge L, Cayé-Thomasen P, Sørensen MS, Andersen, SA.
J Laryngol Otol. 2015;129(11):1091–1096.
Publication year: 2015

BACKGROUND: Virtual reality surgical simulation of mastoidectomy is a promising training tool for novices. Final-product analysis for assessing novice mastoidectomy performance could be limited by a peak or ceiling effect. These may be countered by simulator-integrated tutoring.

METHODS: Twenty-two participants completed a single session of self-directed practice of the mastoidectomy procedure in a virtual reality simulator. Participants were randomised for additional simulator-integrated tutoring. Performances were assessed at 10-minute intervals using final-product analysis.

RESULTS: In all, 45.5 per cent of participants peaked before the 60-minute time limit. None of the participants achieved the maximum score, suggesting a ceiling effect. The tutored group performed better than the non-tutored group but tutoring did not eliminate the peak or ceiling effects.

CONCLUSION: Timing and adequate instruction is important when using final-product analysis to assess novice mastoidectomy performance. Improved real-time feedback and tutoring could address the limitations of final product based assessment.

Mastoidectomy performance assessment of virtual simulation training using final-product analysis

ArticleAssessmentMastoidectomySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Cayé-Thomasen P, Sørensen MS.
Laryngoscope. 2015;125(2):431–435.
Publication year: 2015

OBJECTIVES/HYPOTHESIS: The future development of integrated automatic assessment in temporal bone virtual surgical simulators calls for validation against currently established assessment tools. This study aimed to explore the relationship between mastoidectomy final-product performance assessment in virtual simulation and traditional dissection training.

STUDY DESIGN: Prospective trial with blinding.

METHODS: A total of 34 novice residents performed a mastoidectomy on the Visible Ear Simulator and on a cadaveric temporal bone. Two blinded senior otologists assessed the final-product performance using a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures.

RESULTS: Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator.

CONCLUSIONS: A modified version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency in simulation has been achieved.

Learning Curves of Virtual Mastoidectomy in Distributed and Massed Practice

ArticleAssessmentDirected self-regulated learningInstructional designLearning supportsMastoidectomyTemporal bone surgeryVR simulation
Andersen SA, Konge L, Cayé-Thomasen P, Sørensen MS.
JAMA Otolaryngol Head Neck Surg, 2015;141(10):913–918.
Publication year: 2015

IMPORTANCE: Repeated and deliberate practice is crucial in surgical skills training, and virtual reality (VR) simulation can provide self-directed training of basic surgical skills to meet the individual needs of the trainee. Assessment of the learning curves of surgical procedures is pivotal in understanding skills acquisition and best-practice implementation and organization of training.

OBJECTIVE: To explore the learning curves of VR simulation training of mastoidectomy and the effects of different practice sequences with the aim of proposing the optimal organization of training.

DESIGN, SETTING, AND PARTICIPANTS: A prospective trial with a 2 × 2 design was conducted at an academic teaching hospital. Participants included 43 novice medical students. Of these, 21 students completed time-distributed practice from October 14 to November 29, 2013, and a separate group of 19 students completed massed practice on May 16, 17, or 18, 2014. Data analysis was performed from June 6, 2014, to March 3, 2015.

INTERVENTIONS: Participants performed 12 repeated virtual mastoidectomies using a temporal bone surgical simulator in either a distributed (practice blocks spaced in time) or massed (all practice in 1 day) training program with randomization for simulator-integrated tutoring during the first 5 sessions.

MAIN OUTCOMES AND MEASURES: Performance was assessed using a modified Welling Scale for final product analysis by 2 blinded senior otologists.

RESULTS: Compared with the 19 students in the massed practice group, the 21 students in the distributed practice group were older (mean age, 25.1 years), more often male (15 [62%]), and had slightly higher mean gaming frequency (2.3 on a 1-5 Likert scale). Learning curves were established and distributed practice was found to be superior to massed practice, reported as mean end score (95% CI) of 15.7 (14.4-17.0) in distributed practice vs. 13.0 (11.9-14.1) with massed practice (P = .002). Simulator-integrated tutoring accelerated the initial performance, with mean score for tutored sessions of 14.6 (13.9-15.2) vs. 13.4 (12.8-14.0) for corresponding nontutored sessions (P < .01) but at the cost of a drop in performance once tutoring ceased. The performance drop was less with distributed practice, suggesting a protective effect when acquired skills were consolidated over time. The mean performance of the nontutored participants in the distributed practice group plateaued on a score of 16.0 (15.3-16.7) at approximately the ninth repetition, but the individual learning curves were highly variable.

CONCLUSIONS AND RELEVANCE: Novices can acquire basic mastoidectomy competencies with self-directed VR simulation training. Training should be organized with distributed practice, and simulator-integrated tutoring can be useful to accelerate the initial learning curve. Practice should be deliberate and toward a standard set level of proficiency that remains to be defined rather than toward the mean learning curve plateau.

[Good experiences with interactive temporal bone surgical simulator]

ArticleMastoidectomySurgical trainingTemporal bone surgeryVR simulation
Andersen SA, Mikkelsen PT, Noe KØ, Sørensen MS.
Ugeskr Laeger. 2014;176(5):444–6.
Publication year: 2014

The Visible Ear Simulator (VES) is a freeware temporal bone surgical simulator utilizing a high-fidelity haptic and graphical voxel model compiled from segmented digital images of fresh frozen sections. A haptic device provides the 3-dimensional handling and drilling with force-feedback in real time. In a multilingual user interface the integrated tutor function provides stepwise instructions during drilling through an intuitive, volumetric approach. A censor function draws on metrics derived from the simulator to provide instant and summary feedback for the user. The VES can be downloaded from